人体解剖生理学课后习题详解.docx

上传人:b****1 文档编号:2404134 上传时间:2023-05-03 格式:DOCX 页数:37 大小:43.90KB
下载 相关 举报
人体解剖生理学课后习题详解.docx_第1页
第1页 / 共37页
人体解剖生理学课后习题详解.docx_第2页
第2页 / 共37页
人体解剖生理学课后习题详解.docx_第3页
第3页 / 共37页
人体解剖生理学课后习题详解.docx_第4页
第4页 / 共37页
人体解剖生理学课后习题详解.docx_第5页
第5页 / 共37页
人体解剖生理学课后习题详解.docx_第6页
第6页 / 共37页
人体解剖生理学课后习题详解.docx_第7页
第7页 / 共37页
人体解剖生理学课后习题详解.docx_第8页
第8页 / 共37页
人体解剖生理学课后习题详解.docx_第9页
第9页 / 共37页
人体解剖生理学课后习题详解.docx_第10页
第10页 / 共37页
人体解剖生理学课后习题详解.docx_第11页
第11页 / 共37页
人体解剖生理学课后习题详解.docx_第12页
第12页 / 共37页
人体解剖生理学课后习题详解.docx_第13页
第13页 / 共37页
人体解剖生理学课后习题详解.docx_第14页
第14页 / 共37页
人体解剖生理学课后习题详解.docx_第15页
第15页 / 共37页
人体解剖生理学课后习题详解.docx_第16页
第16页 / 共37页
人体解剖生理学课后习题详解.docx_第17页
第17页 / 共37页
人体解剖生理学课后习题详解.docx_第18页
第18页 / 共37页
人体解剖生理学课后习题详解.docx_第19页
第19页 / 共37页
人体解剖生理学课后习题详解.docx_第20页
第20页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

人体解剖生理学课后习题详解.docx

《人体解剖生理学课后习题详解.docx》由会员分享,可在线阅读,更多相关《人体解剖生理学课后习题详解.docx(37页珍藏版)》请在冰点文库上搜索。

人体解剖生理学课后习题详解.docx

人体解剖生理学课后习题详解

第一章人体基本结构概述

名词解释:

∙主动转运:

是物质逆浓度梯度或电位梯度跨膜转运的过程,它需要消耗细胞代谢所产生的能量。

这种运输依靠细胞膜上的嵌入蛋白,如Na+—K+泵。

∙被动转运:

是指物质或离子顺着浓度梯度或电位梯度通过细胞膜的扩散过程,不需要细胞供给能量。

∙闰盘:

心肌细胞相连处细胞膜特化,凸凹相连,形状呈梯状,呈闰盘。

∙神经原纤维:

位于神经元胞体内,呈线状交织分布,在神经元内起支持和运输的作用。

∙尼氏体:

为碱性颗粒或小块,由粗面内质网和游离核糖体组成,主要功能是合成蛋白质供神经活动需要。

∙郎飞结:

神经纤维鞘两节段之间细窄部分,称为郎飞结。

问答题:

1.细胞中存在那些细胞器,各有何功能?

∙膜状细胞器由有内质网、高尔基复合体、线粒体、溶酶体,非膜状细胞器有中心体和核糖体。

∙内质网功能:

粗面内质网参与细胞内蛋白质的合成,也是细胞内物质运输的通道。

光面内质网除作为细胞内物质运输的通道外,还参与糖类、脂肪、等的合成与分解。

∙高尔基复合体功能:

参与分泌颗粒的形成。

小泡接受粗面内质网转运来的蛋白质,在扁平囊中进行加工、浓缩,最后进入大泡形成分泌颗粒,移至细胞的顶部,然后移出胞外。

∙线粒体功能:

是细胞内物质氧化还原的重要场所,细胞内生物化学活动所需要的能量窦由此供给,故称为细胞的“动力工厂”。

∙溶酶体功能:

溶酶体内含有的酸性磷酸梅和多种水解酶,能消化进入细胞内的细菌、异物和自身衰老和死亡的细胞结构。

∙中心体功能:

参与细胞的游戏分裂,与细胞分裂过程中纺锤体的形成和染色质的移动有关。

∙核糖体功能:

合成蛋白质。

2.物质进入细胞内可通过哪些方式,各有何特点?

∙被动转运:

物质或离子顺着浓度梯度或电位梯度通过细胞膜的扩散过程,不需要细胞供给能量

∙包括单纯扩散,如脂溶性物质;协助扩散(需要载体和通道),如非脂溶性物质。

∙主动转运:

物质逆浓度梯度或电位梯度跨膜转运的过程,它需要消耗细胞代谢所产生的能量。

这种运输依靠细胞膜上的嵌入蛋白,如Na+—K+泵。

∙胞饮和胞吐作用:

大分子物质或颗粒状物质通过细胞膜运动将物质吞入细胞内。

3.结缔组织由哪些种类,简述其结构和功能?

∙疏松结缔组织、致密结缔组织、脂肪组织、网状结缔组织、骨、软骨、血液、肌腱、筋膜。

(1)疏松结缔组织:

充满与组织、器官间,基质多,纤维疏松,细胞少。

有免疫功能。

(2)致密结缔组织:

纤维较多,主要为胶原纤维和弹性纤维。

保护功能。

(3)脂肪组织:

由大量脂肪细胞构成。

有维持体温、缓冲、支持等作用。

4.肌肉组织包括几种类型,比较不同肌肉的结构和功能特点?

肌肉组织由肌细胞组成。

肌细胞细长似纤维状,又称肌纤维。

细胞质称肌浆,内含可产生收缩的肌原纤维。

肌肉组织可分骨骼肌、心肌、平滑机3种类型。

骨骼肌收缩迅速有力,受意识支配;心肌收缩持久,有节律性,为不随意肌;平滑肌的收缩有节律性和较大伸展性,为不随意肌。

5.神经组织由几种类型的细胞组成,各有何特点?

神经组织由神经细胞和神经胶质细胞组成。

神经细胞有成神经元,是神经组织的主要成分,是神经系统的基本功能单位。

神经元具有接受刺激和传导神经冲动的功能。

神经胶质细胞在神经组织中期支持、营养、联系的作用。

第三章神经系统

名词解释:

∙反馈:

受控部分的活动会反过来影响控制部分的活动。

反馈具有双向性,是机体维持内环境稳态的一个重要方式。

∙兴奋:

活组织因刺激而产生的冲动的反应称为兴奋。

∙阈刺激:

达到这一强度的临界强度的刺激才是有效刺激。

称为阈刺激。

∙极化:

细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。

极化状态是细胞处于生理静息状态的标志。

∙平衡电位:

当k+的扩散造成膜两侧的电势剃度足以对抗由于浓度剃度所引起的k+的进一步扩散时,离子的移动就达到了平衡,这时,k+的净内流量,k+跨膜流动到达平衡,膜对k+的跨膜净通量为零,膜两侧的电位差也稳定于某一相对恒定水平。

∙去极化:

随着离子的跨膜流动,膜两侧的极化状态将被破坏,一般将膜极化状态变小的变化趋势称为去极化。

∙突触:

使一个神经元的冲动传到另一个神经元或肌细胞的相互接触的部位。

∙受体:

是指能与特定的生物活性物质可选择性结合的生物大分子,是镶嵌在细胞膜上或存在于细胞膜内的蛋白质复合体。

∙兴奋性突触后电位:

是发生在突触后膜上的局部电位变化,它引起细胞膜电位朝着去极化方向发展。

∙抑制性突触后电位:

同样是发生在突触后膜上的电位,但它却是引起细胞膜电位向着超极化方向发展的局部电位。

∙条件反射:

在出生后通过训练而形成的反射。

是在非条件反射的基础上建立起来的一种特定的反射活动,可以形成,也可以消退,数量可以不断增加。

∙交互抑制:

当一刺激所引起的传入冲动到达中枢,引起屈肌中枢发生兴奋时,另一方面却使伸肌中枢发生抑制,结果屈肌收缩,与其伸肌舒张,这种现象成为交互抑制。

∙诱发电位:

各种感受器的传入冲动都可以在大脑皮质的特定区域引起电位变化,称为诱发电位。

∙牵张反射:

有神经支配的骨骼肌受外力牵拉而被伸长时,能反射性地引起受牵拉的同一块肌肉收缩,称为牵张反射。

∙肌紧张:

是指缓慢持续牵拉肌腱时引起的牵张反射,表现为受牵拉的肌肉发生轻度、持续的紧张性收缩,以阻止其被牵拉。

∙第二信号系统:

人类在社会劳动和交往中产生了语言、文字,它们是具体信号的抽象,对这些抽象信号刺激发生反映的大脑皮层称第二信号系统。

∙去同步化:

当传入信息增多时,将引起大脑皮质中个神经元的电活动不一致,则出现高频率、低幅度的波形,称为去同步化。

问答题:

1.举例说明机体生理活动中的反馈调节机制。

兴奋通过神经元的环状联系,则由于这些神经元的性质不同,而可能表现出不同的生理效应。

如果环式结构内各个突触的生理性质大体一致,则冲动经过环式传递后,在时间上加强了作用的持久性,这是一种正反馈作用;如果环式结构内存在抑制性中间神经元,并同其返回联系的胞体形成抑制性突触,则冲动经过环式传递后,信号被减弱或停止,这是一种负反馈作用。

2.简述神经系统的基本组成。

神经系统由中枢神经和周围神经系统组成。

中枢神经系统由脑和脊髓组成;周围神经系统由脊神经、脑神经、和支配内脏的自主神经组成,自主神经又分为交感和副交感神经。

神经元是神经系统中最基本的结构和功能单位。

3.试述动作电位形成的离子机制。

在神经细胞膜上,存在大量的Na+通道和K+通道,细胞膜对离子通透性的大小主要由这些离子通道开放的程度所决定。

我们已经知道,在静息状态下,神经细胞膜的静息电位在数值上接近于K+的平衡电位,膜的通透性主要表现为K+的外流。

当细胞受到一个阈刺激或阈刺激以上强度的刺激时,膜上的离子通道将被激活。

由于不用离子通道激活的程度和激活的时间不同,当膜由静息电位转为动作电位时,膜对不同离子的通透性将产生巨大的变化。

4.简述神经信号引起肌肉收缩的主要生理事件?

∙神经传向肌肉并引起肌肉的收缩是一个极其复杂的过程,中间涉及电—化学—电的相互转换,同时伴随复杂的生物化学反应,起全部过程的主要事件总结如下:

(1)神经纤维上的动作电位到达轴突终末,引起突触前膜去极化,Ca2+从细胞外进入突触前膜中。

(2)在Ca2+的促发作用下,突触小泡向前膜移动,乙酰胆碱被释放到突触间隙中,完成电信号向化学信号的转换。

(3)乙酰胆碱与终板膜上的乙酰胆碱受体结合,启动肌膜上Na+、K+通道开放,Na+、K+沿肌膜离子通道流动,产生终板电位,完成化学信号向电信号的转换。

(4)当终板电位达到肌细胞膜的阈电位时,引发肌膜产生肌动作电位,动作电位并沿肌膜迅速向整个肌细胞扩布;

(5)肌动作电位传入肌内膜系统,引起肌膜系统终池中的Ca2+进入肌丝处;

(6)Ca2+与肌钙蛋白复合体结合,使横桥与肌动蛋白的作用点结合,粗细肌丝相对滑动,肌小节缩短,肌肉收缩。

肌膜上的电信号,转换成肌肉的机械收缩。

5.反射弧由那些部分组成?

试述其各部特点。

∙由五部分组成:

(1)感受器:

感受内外环境刺激的结构,它可将作用于机体的刺激能量转化为神经冲动。

(2)传入神经:

由传入神经元的突起所构成。

这些神经元的胞体位于背根神经节或脑神经节内,与感受器相连,将感受器的神经冲动传导到中枢神经系统。

(3)神经中枢:

为中枢神经系统内调节某一特定生理功能的神经元群。

一个简单的和一个复杂的生理活动所涉及的中枢范围是不同的,需要这些部位的神经元群共同协调才能完成正常的呼吸调节活动。

(4)传出神经:

由中枢传出神经元的轴突构成,如脊髓前角的运动神经元,把神经冲动由中枢传到效应器。

(5)效应器:

发生应答反应的器官,如肌肉和腺体等组织。

6.试述脑神经的分布、主要功能及相应核团的位置。

名称

核的位置

分布及功能

嗅神经

大脑半球

鼻腔上部黏膜,嗅觉

视神经

间脑

视网膜,视觉

动眼神经

中脑

眼的上下、内直肌和下斜肌调节眼球运动;提上睑肌;瞳孔括约肌使瞳孔缩小以及睫状肌调节晶状凸度

滑车神经

中脑

眼上斜肌使眼球转向下外方

三叉神经

脑桥

咀嚼肌运动;脸部皮肤、上颌黏膜、牙龈、角膜等的浅感觉、舌前2/3一般感觉。

外展神经

脑桥

眼外直肌使眼球外转

面神经

脑桥

面部表情肌运动;舌前2/3黏膜的味觉;泪腺、颌下腺、舌下腺的分泌

位听神经

延髓、脑桥

内耳蜗管柯蒂氏器的听觉;椭圆囊,球囊斑及3个半规管壶腹嵴的平衡功能。

舌咽神经

延髓

咽肌运动;咽部感觉、舌后1/3的味觉和一般感觉、颈动脉窦的压力感觉器和颈动脉体的化学器的感觉。

迷走神经

延髓

咽喉肌运动和咽喉部感觉;心脏活动;支气管平滑肌;横结肠以上的消化管平滑肌的运动和消化腺体的分泌

副神经

延髓

胸锁乳突肌使头转向对侧,斜方肌提肩

舌下神经

延髓

舌肌的运动

7.何谓特异性感觉投射系统?

试以浅感觉和深感觉为例,说明其感觉传导通路。

∙特异性投射系统是指感觉冲动沿特定的感觉传导通路传送到大脑皮质的特定部位进而产生特定感觉的传导径路。

∙躯干、四肢浅感觉的传导通路:

第一级神经元位于脊神经节内,其周围突构成脊神经中的感觉纤维,分布到皮肤和黏膜内,其末梢形成感受器。

中枢突经由脊神经后根进入脊髓,在脊髓灰质后角内更换神经元。

第二级神经元的轴突越至对侧,在脊髓白质的前外侧部即前外侧索上行,形成脊髓丘脑束。

后者历经延髓、脑桥、中脑至丘脑外侧核,在此更换为第三级神经元,再发生纤维组成丘脑皮质束。

经内囊,投射到大脑皮质中央后回的中、上部和旁中央小叶后部的躯干、四肢感觉区。

8.试述大脑皮质主要的沟、回及功能分区。

∙大脑主要包括左、右大脑半球,每个大脑半球分3个面,即背外侧面、内侧面和底面。

分布在背外侧面的主要沟裂有中央沟、大脑外侧沟、顶枕裂、矩状裂。

这些沟裂将大脑分为四叶:

额叶、顶叶、枕叶和颞叶。

∙分区:

(1)体表感觉区

(2)肌肉本体感觉区

(3)视觉区

(4)听觉区

(5)嗅觉和味觉区

9.试述大脑皮质支配身体各部的感觉和运动代表区的特点。

∙中央后回的投射具有如下特点:

(1)躯体感觉传入冲动向皮质的投射具有交叉的性质

(2)总的空间投射是倒置的,下肢代表区在中央后的顶部,上肢代表区在中间部,头部代表区在底部。

(3)投射区域的大小与躯体各部分的面积不成比例,而是与不同体表部位的感觉灵敏程度以及感受器的密集程度和传导这些感受器冲动的传入纤维数量有关。

∙大脑皮质运动区对躯体运动的控制具有以下特点:

(1)运动皮质对躯体运动的调节呈交叉支配,即一侧运动区主要调节和控制对侧躯体运动。

(2)具有精细的功能定位。

(3)功能代表区的大小与运动的复杂、精细程度有关,而不与肌肉的大小想适应。

运动越精细、越复杂的部位,其代表区越大。

(4)以适当强度的电流刺激运动代表区的某一点,只会一起个别肌肉收缩,或某块肌肉收缩,而不是肌肉群的协同收缩。

(5)运动区的神经细胞与感觉区一样,呈柱状纵向排列,称运动柱。

一个运动柱可以控制同一关节的几块肌肉,而同一块肌肉又可接受几个运动柱的控制。

10.比较说明椎体系和椎体外系的功能特点。

∙锥体系统是指由皮层发出并经延髓锥体抵达对侧脊髓前角的皮层脊髓束与抵达脑神经运动核的皮层脑干束。

锥体系的皮层起源主要为4区,其纤维中仅有10%~20%与脊髓运动神经元形成单突触联系。

锥体系既可直接抵达神经元以发动肌肉运动,抵达神经元以调整肌索敏感性,也可通过脊髓中间神经元改变拮抗肌运动神经元之间的对抗平衡,保持运动的协调。

∙锥外体系是指直接或间接经皮层下某些核团并通过锥体外系和旁锥体系三部分。

锥体外系以多次突除联系,控制双侧脊髓活动,它主要调节肌紧张、肌群协调运动。

11.试述下丘脑对内脏活动的调节。

∙下丘脑是皮质下调节内脏活动的高级中枢。

它与大脑边缘系统、脑干网状结构和垂体具有密切的联系。

(1)体温调节:

下丘脑内存在着对温度敏感的神经元,血液温度的升高或降低可使它们的电活动发生变化,进而通过调节身体的散热或产热机制,将体温调定于一定水平。

(2)摄食行为调节:

下丘脑是处理和调制饥饿、饱胀信息的主要中枢。

下丘脑的腹内侧区还分布着葡萄糖感受器,当血糖水平升高时,导致饱中枢兴奋,抑制摄食中枢的活动。

(3)水平衡调节:

电刺激该区,经短时间的潜伏期,动物开始大量饮水;破坏此区,则动物饮水明显减少。

此外,下丘脑存在着渗透压感受器,可以感受血液渗透压的变化,进而通过控制饮水行为或激素分泌,调节体内的水平衡。

(4)对内分泌腺的调节:

他们通过控制垂体的激素分泌,调节机体的内环境,影响各种内脏功能。

(5)对生物节律的控制:

下丘脑视交叉上核与昼夜节律有关。

破坏该核团,导致动物原有的一些昼夜周期节律性活动,如饮水、排尿等节律紊乱或丧失。

12.试述自主神经对内脏活动调节的功能特点。

∙内脏的双重神经支配:

绝大部分内脏器官既接受交感神经,又接受副交感神经的支配,形成双重神经支配。

仅有少数内脏和组织只受交感神经的支配。

正是由于交感神经系统和副交感神经系统的不同作用和双重支配,内脏器官的功能才能保持稳定,从而有利于机体整体对环境的适应。

∙自主神经中枢的紧张性:

交感、副交感神经及其神经节仅仅是自主神经系统的外周部分,在正常生理条件下,它们的活动受中枢神经系统的调节。

自主神经中枢经常有冲动的发放,称为紧张性发放。

交感缩血管中枢的紧张性活动则与中枢神经组织内CO2浓度密切有关。

∙交感中枢和副交感中枢的交互抑制:

交感神经和副交感神经的功能作用不仅表现在外周,在交感中枢与副交感中枢之间,也存在交互抑制关系,即交感中枢紧张性增强时,副交感中枢紧张性就减弱,反之亦然。

13.什么是条件反射?

列举生活实例,说明几种不同的条件性抑制。

∙条件反射是机体后天获得的,是个体在生活的过程中,在非条件反射的基础上建立起来的,它的反射通路不是固定的,因此具有更大的可塑性和灵活性,从而提高了机体适应环境的能力。

∙消退抑制:

是内抑制最基本、最简单的形式。

如果条件刺激重复出现而不用非条件刺激强化,则条件反射会逐渐减弱,乃至对条件刺激完全不发生反映。

这是由于原来引起兴奋性反映的条件刺激,转化成为引起抑制性反应的条件刺激所致。

∙分化抑制:

如果以后只在条件刺激出现时给予强化,而对近似的刺激不予强化,结果只有得到强化的条件刺激仍保持阳性效应,那些得不到强化的近似刺激就不在引起反映,这种现象称为条件反射的分化。

这样引起的抑制称为分化抑制。

∙延缓抑制:

在条件反射实验中,一般条件刺激出现20s左右以非条件刺激强化。

如果将条件刺激与非条件刺激相结合的时间间隔延长,例如,最后达3min,则将形成延缓条件反射。

是由于此时皮质内发生了抑制过程,称为延缓抑制。

14.试述大脑两半球功能的布对称性。

在发育过程中,人类左、右半球功能发生分化,对大多数以右手劳动者来说,左侧半球语词活动功能占优势;右侧半球非词语性认识功能占优势。

这种优势又是相对的,因为左半球亦有一定的非词语性认识功能,右半球也有一定简单的词语功能。

第四章感觉器官

问答题:

1.试述感受器的一般生理特征。

(1)感受器的适宜刺激:

每种特定的感受器对某种类型的刺激较其他类型更容易起反应,这种类型的刺激就是适宜刺激。

然而,某些感受器也可对非适宜刺激产生比适宜刺激弱得多的反应,得到与适宜刺激同样的感觉。

要想使刺激引起感受器兴奋,刺激强度和刺激持续时间必须达到一定的量,通常把作用于感受器引起人体产生某种感觉所需的最小刺激量称为感觉阈值。

(2)感受器的换能、感受器电位和感受性冲动的发放

(3)感受器的适应:

同一刺激强度持续作用于同一感受器时,并不总是产生同样大小的感受器电位的现象,称为感受器的适应。

这类感受器可降低去极化范围和程度,使传入神经元产生动作电位的频率下降,甚至不再产生反映。

根据产生适应的快慢,将感受器分为紧张型感受器和时相型感受器。

(4)感觉的精确度:

每个感觉神经元对刺激的反应都限定在所支配的某个皮肤区域内,这就是所谓的感受野。

感受野大小随支配皮肤区域内的感受器密度而不同,感受器空间分布密度越高,感受野亦越小,其感觉的精确度或分辨能力也就越高。

2.眼近视时是如何调节的?

眼折光力的调节使睫状肌中环行肌收缩,引起连接于晶状体的悬韧带放松;晶状体由于其自身的弹性而向前方和后方凸出,使眼的总折光能力增大,使光线聚焦成象在视网膜上。

调节反射时,除晶状体的变化外,同时还出现瞳孔缩小和两眼视轴向鼻中线的会聚。

瞳孔缩小主要是减少进入眼内光线的量;两眼会聚主要是使看近物时物象仍可落在两眼视网膜的相称位置。

3.近视、远视和散光患者的眼折光系统发生了什么异常?

如何矫正?

∙近视:

多数由于眼球的前后径过长,使来自远方物体的平行光线的平行光线在视网膜前聚焦,到视网膜时光线发散,以至物象模糊。

近视也可由于眼的折光能力过强,使物体成象于视网膜之前。

∙远视:

由于眼球前后径过短,以至主焦点的位置在视网膜之后,使入眼的平行光线在到达视网膜时还未聚焦,而形成一个模糊的物象。

远视眼的特点是在看远物时就需要动用眼的调节能力,而看近物时晶状体的调节已接近它的最大限度,故近点距离较正常人为大,视近物能力下降。

∙散视:

正常眼的折光系统的各折光面都是正球面的,从角膜和晶状体真个折光面射来的光线聚焦于视网膜上。

4.视杆细胞和视椎细胞有何异同?

视杆细胞和视椎细胞在形态上均可分为4部分,由内向外依次称为外段、内段、胞体和终足;其中外段是感光色素集中的部位,在感光换能中起重要作用。

视杆细胞和视椎细胞的主要区别在外段,其外形不同,所含感光色素也不同。

视杆细胞外段呈长杆状,视椎细胞外段呈圆锥状。

两种感光细胞都通过终足和双极细胞发生突触联系,双极细胞再与神经节细胞联系。

5.什么是三原色学说?

在视网膜中存在着分别对红、绿、蓝光线特别敏感的3种视锥细胞或相应的3种感光色素,不同波长的光线可对与敏感波长相近的两种视锥细胞或感光色素产生不同程度的刺激作用,从而引起不同颜色的感觉——即丰富的色彩。

在人的视网膜中,视杆细胞和视锥细胞的空间分布是不同的,因而具有相应的视觉空间分辨特性。

6.简述鼓膜和听骨链的作用。

鼓膜振动推动附着在鼓膜上的锤骨柄,带动整个听骨链。

所以,鼓膜振动经3块听小骨传递,使抵在前庭窗上的镫骨底板振动,引起内耳前庭窗膜所构成的声能量传递系统,发挥了很好的增压减振的生理效应。

7.简述椭圆囊和球囊在维持身体平衡上的作用。

椭圆囊和球囊是感受线性加速度和头空间位置变化的感受器。

由于毛细胞的纤毛埋在含有碳酸钙结晶的耳石或耳沙膜中,而耳石又给耳石膜以质量,当头向左或右倾时,重力使耳石膜产生压力量变造成纤毛弯曲。

如头向左倾时,左耳石器官毛细胞上的纤毛受牵拉而使毛细胞则超级化;反之则亦然。

毛细胞去极化兴奋前庭神经纤维,冲动传导至脑,产生头部位置感觉,并引起肌紧张反射性改变以维持机体姿势平衡。

8.简述半规管功能。

半规管是感受正、负旋转加速度刺激的感受器,各自的平面相互接近互相垂直。

这种排列使头部在空间作空间作旋转或弧形变速运动时,由于与旋转平面一致的水平半规管内每个毛细胞的纤毛都处于特定位置,动纤毛离鼻或头前最近,而最小纤毛或静纤毛离头最近。

当半规管对刺激过度敏感或受到过强厘刺激时,会引起一系列自主性功能反应,出现恶心、呕吐、皮肤苍白、眩晕、心率减慢和血压下降等现象。

9.何谓前庭自主神经反应?

在头向左旋转时,内淋巴液的惯性使纤毛从左向右移动,液体的相对运动引起脑左边的毛细胞纤毛向动纤毛方向移动并去极化,而脑右边毛细胞的纤毛向静纤毛方向移动并超级化,相应地脑左边的前庭神经增加他们的动作电位发放率,而脑右边的前庭神经则降低它们的动作电位发放率。

于是这种信息被传递到脑,被翻译成头正在作逆时针方向旋转。

当半规管对刺激过度敏感或受到过强刺激时,会引起一系列自主性功能反映。

10.按功能划分,感受器由那些主要类型,其主要特点是什么?

∙化学感受器:

主要感受化学物质浓度刺激。

∙痛感受器或伤害性感受器:

只要感受组织损伤刺激。

在组织受到如过强的机械、热或化学能损伤性刺激时,可激活这类感受器。

∙温度感受器:

热感受器对高于体温的温度变化起反应,冷感受器对低于体温的温度变化起反应。

∙本体感受器或机械感受器:

对机械力或引起感受器变形的刺激敏感。

第五章血液

名词解释:

∙细胞外液:

是指组织液、血浆、脑脊液和淋巴液等,它是细胞生存的液体环境,故又称为内环境。

∙稳态:

人体大部分细胞与外界隔离而生活在细胞外液中,细胞外液是细胞生存的直接环境,细胞外也构成了机体生存的内环境。

内环境理化性质的相对稳定是机体维持正常生命活动的必要条件。

内环境相对稳定的状态称为稳态。

∙血液凝固:

简称凝血,指血液从流动的溶胶状态转变为不流动的凝胶状态的过程。

∙凝血因子:

血浆与组织中直接参与凝血过程的物质称为凝血因子。

∙血型:

指血细胞膜上所存在的特异抗原的类型,通常所谓血型,主要是指红细胞血型,根据红细胞膜上凝集原进行命名。

∙Rh血型:

在大部分人的红细胞尚存在另一类抗原,称为Rh因子。

根据红细胞膜上的Rh因子建立的血型系统称为Rh血型系统。

问答题:

1.血液对机体稳态的保持具有那些重要作用?

∙人体大部分细胞与外界隔离而生活在细胞外液中,细胞外液是细胞生存的直接环境,细胞外也构成了机体生存的内环境。

内环境理化性质的相对稳定是机体维持正常生命活动的必要条件。

内环境相对稳定的状态称为稳态。

∙血液对于维持肌体内环境的稳定具有极其重要的作用。

人体新陈代谢所需的全部物质和代谢产物都需要通过血液和血液循环完成交换和排出体外。

血液中存在于血液酸碱平衡、血液凝固、免疫防御、运送氧和二氧化碳有关的各种细胞、蛋白和因子。

2.白细胞由那些主要类型?

试述其主要功能。

∙根据白细胞的染色特征,可将其分为两大类:

一类为颗粒白细胞,简称粒细胞,包括中性粒细胞、嗜酸性粒细胞、嗜碱性粒细胞;另一类称为无颗粒细胞,包括淋巴细胞和单核细胞。

∙白细胞的主要功能是参加机体的免疫反应。

由不同类型的白细胞参与的非特异性和特异性免疫反应组成了机体对入侵异物和体内畸变细胞防御的全部内容。

血小板主要参与机体的血凝反应。

许多因子的活化都需在血小板的磷脂表面进行,因而为凝血因子的激活提供了条件。

凝血过程中血小板能释放许多与血凝有关的因子。

3.T淋巴细胞和B淋巴细胞是怎样发挥其免疫功能的?

∙由T细胞介导的免疫反应称为细胞免疫反应。

在细胞免疫反应中,T细胞并不分泌抗体,而是通过合成和释放一些特殊细胞因子来破坏肿瘤细胞、限制病毒复制、激活其

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2