设计压电传感器的电荷放大、滤波、电压放大电路的.doc

上传人:聆听****声音 文档编号:24670 上传时间:2023-04-28 格式:DOC 页数:7 大小:413KB
下载 相关 举报
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第1页
第1页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第2页
第2页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第3页
第3页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第4页
第4页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第5页
第5页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第6页
第6页 / 共7页
设计压电传感器的电荷放大、滤波、电压放大电路的.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

设计压电传感器的电荷放大、滤波、电压放大电路的.doc

《设计压电传感器的电荷放大、滤波、电压放大电路的.doc》由会员分享,可在线阅读,更多相关《设计压电传感器的电荷放大、滤波、电压放大电路的.doc(7页珍藏版)》请在冰点文库上搜索。

设计压电传感器的电荷放大、滤波、电压放大电路的.doc

WORD格式可编辑

压电传感器前置放大电路的设计

姓名:

陈贤波

学号:

SX1201139

一:

电荷放大电路

电荷放大器原理:

电荷变换是该电荷放大器的核心部分,是一个具有电容负反馈的,输入阻抗极高的高增益运算放大器。

它与压电式传感器及其电缆构成的等效电路如图-1所示。

图-1压电式传感器及其电缆构成的等效电路

其中:

为压电传感器的等效电容,为压电式传感器的等效绝缘漏电阻,为电缆等效电容,为放大器的输入电容,为放大器的输入阻抗,为反馈电容,是等效输入噪声电压,是等效输入失调电压。

如将折算到输入端,其等效电容为(1+K),K为运放的开环增益。

由于反馈电容、传感器电容、电缆电容及放大器电容并联,不计算噪声和失调电压的影响,电荷放大器的输出电压为

(1.1)

运算放大器的开环增益K很大(约为104~106),故远大于+,远大于,此时,,,和都可以忽略不计,即压电传感器本身的电容大小和电缆长短对电荷放大器输出的影响可以忽略。

(1.2)

式中C=++因为放大器是高增益的,K>>1,所以一般情况下(1+K)>>C,则有

(1.3)

上式表明,当反馈电容一定时,电荷放大器的输出电压与传感器产生电荷成正比,在实际电路中,考虑到电压灵敏度和量程的问题,一般的值在100~10000pF范围内选择。

本设计选定10000pF,即10nF。

当开环增益A很大,远大于+,远大于不能忽略,(2..19)式可表示为:

(1.4)当频率够低时,就不能忽略。

因此式(2.20)是表示电荷放大器的低频响应。

F越低,时,其输出电压幅值为:

(1.5)

可以看出,这是截止频率点电压值电压输出值,即相对应的下限截止频率为

(1.6)

若忽略运放的输入电容和输入电导,同时忽,则上限频率为:

(1.7)

其中为输入电缆直流电阻,本设计设为30Ω。

本设计选用为1000MEG,经计算。

传感器参数:

压电传感器PZT压电常数d33=450PC/N,d31=-265PC/N,相对介电常数2100,故压电传感器固有电容为:

(1.8)

若传感器输入电缆分布电容为,设有100m,则。

3.87×。

要测的信号频率范围:

1Hz~5KHz,故满足要求。

压电传感器PZT压电常数d33=450PC/N,d31=-265PC/N,传感器配重10克,加速度范围0~10g,本设计选用,电荷G公式为:

(1.9)

故所测量的电荷范围为0~441pC。

本设计电荷放大器仿真电路如下图-2所示,仿真结果如图-3所示,结果分析如表-1所示。

图-2电荷放大器电路

图-3电压输出仿真

表-1电荷放大器仿真结果

仿真结果

峰值

49.451mV

理想值

44.1mV

偏置

5.4547mV

谷值

49.451mV

理想值

-49.1mV

偏置

5.4547mV

二:

滤波电路

在实际检测过程中,由于外部干扰信号、外部环境的变化等因素的影响,噪声信号会叠加在有用的低频信号中在输出端输出。

为此,电荷放大器的设计中必须选用一种合适的滤波器对输出信号进行必要的处理。

巴特沃斯型滤波器具有最好的的平坦效应,在通带内和阻带内没有波纹。

由于传感器输出的信号很小,本文选用巴特沃斯滤波器。

查表得,增益为2时,

图-4低通滤波器

图-5低通滤波器截止频率为5kHz时幅频特性曲线

由于前面仿真结果有很大的偏置,故本设计需要滤除低频信号,本设计选用最简单的高通滤波器,即一介无源高通滤波器。

设计要求信号频率范围是:

1Hz~5KHz,根据

(2.1)

选用100uF的电容,1.59k的电阻。

三:

反相放大保护输出

此级电路主要作用是实现输出电压信号与电荷信号相位同步和二级放大,由于电荷转换级本身是一个积分器电路,输入输出端的电压相位会反向,保持电荷放大器输出电压和输入电荷成比例放大。

因为电路电阻的不完全匹配等问题,电路放大倍数并不十分准确,通过调节该电路对电压进行两级放大和补偿校准,如图-6电路所示,调节电位器,可以使输出电压在增益0~10倍之间任意变化。

同时通过输出端的双限稳压管,防止输出电压超出后续接入的PXI系统输入电压上下限。

起到保护数据采集卡的作用。

图-6反相放大电路

总仿真电路图如图-7所示,仿真结果如图-8所示,结果分析如图-9所示。

图-7总仿真电路图

图-8最终仿真结果

表-2最终仿真数据分析

仿真结果

峰值

437.244mV

理想值

441mV

偏置

89.325uV

谷值

-437.546mV

理想值

-441mV

偏置

89.325uV

四:

数据采集

本设计采用基于PXI采集卡进行采集,软件用Labview进行编程,程序如图-9所示。

图-9采集程序

专业知识整理分享

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2