最齐全的天文知识.docx

上传人:b****1 文档编号:2533110 上传时间:2023-05-03 格式:DOCX 页数:15 大小:26.47KB
下载 相关 举报
最齐全的天文知识.docx_第1页
第1页 / 共15页
最齐全的天文知识.docx_第2页
第2页 / 共15页
最齐全的天文知识.docx_第3页
第3页 / 共15页
最齐全的天文知识.docx_第4页
第4页 / 共15页
最齐全的天文知识.docx_第5页
第5页 / 共15页
最齐全的天文知识.docx_第6页
第6页 / 共15页
最齐全的天文知识.docx_第7页
第7页 / 共15页
最齐全的天文知识.docx_第8页
第8页 / 共15页
最齐全的天文知识.docx_第9页
第9页 / 共15页
最齐全的天文知识.docx_第10页
第10页 / 共15页
最齐全的天文知识.docx_第11页
第11页 / 共15页
最齐全的天文知识.docx_第12页
第12页 / 共15页
最齐全的天文知识.docx_第13页
第13页 / 共15页
最齐全的天文知识.docx_第14页
第14页 / 共15页
最齐全的天文知识.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

最齐全的天文知识.docx

《最齐全的天文知识.docx》由会员分享,可在线阅读,更多相关《最齐全的天文知识.docx(15页珍藏版)》请在冰点文库上搜索。

最齐全的天文知识.docx

最齐全的天文知识

黑洞

有的天体的质量十分巨大,因而引力极强,没有任何东西能从该处逃逸,甚至光线也不例外。

没有光线返回,眼睛无法看到物体,所以称之为“黑洞”。

黄道

地球上的人看太阳于一年内在恒星之间所走的视路径,即地球的公转轨道平面和天球相交的大圆黄道和天赤道成23度26分的角,相交于春分点和秋分点。

黄极

天球上与黄道角距离都是90度的两点,靠近北天极的叫“北黄极”。

黄极与天极的角距离等于黄赤交角。

北黄极在天龙座与两星联线的中央。

黄道带

天球上黄道两边各8度(共宽16度)的一条带。

日、月和主要行星的运行路径都处在黄道带内。

古人为了表示太阳在黄道上的位置。

把黄道分为十二段,叫“黄道十二宫”。

从春分起依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶和双鱼。

过去的黄道十二宫和黄道十二星座一致。

由于春分点向西移动,两千年前在白羊座中的春分点已移至双鱼座,命名与星座已不吻合。

三垣

包括紫微垣、太微垣、天市垣。

紫微垣包括北天极附近的天区,大体相当于拱极星区;太微垣包括室女、后发、狮子等星座的一部分;天市垣包括蛇夫、武仙、巨蛇、天鹰等星座的一部分。

二十八宿

二十八宿分:

东方七宿,西方七宿,南方七宿,北方七宿。

二十八宿又称为二十八星或二十八舍。

最初是古人为比较日、月、金、木、水、火、土的运动而选择的二十八个星官,作为观测时的标记。

“宿”的意思和黄道十二宫的“宫”类似,表示日月五星所在的位置。

到了唐代,二十八宿成为二十八个天区的主体,这些天区仍以二十八宿的名称为名称,和三垣的情况不同,作为天区,二十八宿主要是为了区划星官的归属。

二十八宿从角宿开始,自西向东排列,与日、月视运动的方向相同。

东方七宿

角、亢、氐、房、心、尾、萁;北方七宿:

斗、牛(牵牛)、女(须女)、虚、危、室(营室)、壁(东壁)

西方七宿

奎、娄、胃、昴、毕、觜、参

南方七宿

井(东井)、鬼(舆鬼)、柳、星(七星)、张、翼、轸。

北方七宿

斗、牛、女、虚、危、室、壁

辅官或辅座

此外还有贴近这些星官与它们关系密切的一些星官,如坟墓、离宫、附耳、伐、钺、积尸、右辖、左辖、长沙、神宫等,分别附属于房、危、室、毕、参、井、鬼、轸、尾等宿内,称为辅官或辅座。

唐代的二十八宿包括辅官或辅座星在内总共有星183颗。

宇宙速度

是指从地面向宇宙发射人造天体必须具备的初始速度。

第一宇宙速度

人们将7.9公里/每秒的速度称为“第一宇宙速度”,又称“环绕速度”,低于这个速度,物体就会在重力的作用下返回地球。

第二宇宙速度

如果我们把速度加大,直到11.2公里/每秒,这个人造卫星就可以不受地球吸引力的影响,而到太阳系内的行星际空间旅行。

人们称11.2公里/每秒的速度为“第二宇宙速度”

第三宇宙速度

如果我们还想让人造卫星飞出太阳系,到其他星球去旅行,那就必须把速度加大到16.7公里/每秒,这个速度称为“第三宇宙速度”。

平年与闰年

由于一回归年的天数不是整数,所以每年的天数是不一样的,有的是365天,有的是366天。

一年的天数是366天的年份称为“闰年”,是365天的称为“平年”。

“闰年”的二月比“平年”多1天,其他月份都是一样的。

一般来说,能被4整除的年份是“闰年”.如果年份是整百的,则要能被400整除的才是“闰年”。

闰月

农历与公历一年所包含的天数不同,公历一年大约有365天,农历一年有354天。

为了使两者的一年的天数相同,所以农历有的年份要加一个月,增加的这个月叫“闰月”。

因为公历的一年比农历的一年只多约11天,所以不能每年都加闰月,大约19年有7个闰月。

回归年

地球绕太阳运行一周所用的时间叫回归年。

一回归年为365天5小时48分46秒(合365.24219天)

土星(Saturn)轨道距太阳142,940万千米,公转周期为10759.5天,相当于29.5个地球年,视星等为0.67等。

在太阳系的行星中,土星的光环最惹人注目,它使土星看上去就像戴着一顶漂亮的大草帽。

观测表明构成光环的物质是碎冰块、岩石块、尘埃、颗粒等,它们排列成一系列的圆圈,绕着土星旋转。

土星也是一颗液态行星,直径约为地球的9.5倍,质量为地球的95倍,它的液态表面中含有氢和氦。

序号

彗星名称

周期(年)

最初出现

最近回归

回归次数

1

恩克

3.30

1786

1984

63

2

格里格—斯克杰利厄普

5.10

1902

1982

14

3

杜—托伊特Ⅱ

5.20

1945

1982

2

4

坦普尔Ⅱ

5.27

1873

1987

18

5

本田—马尔克斯—帕德贾萨科维

5.28

1948

1990

7

6

施瓦斯曼—瓦赫曼Ⅲ

5.32

1930

1985

2

7

诺伊明Ⅱ

5.40

1916

1981

2

8

勃劳逊

5.47

1846

1879

5

9

坦普尔Ⅰ

5.50

1867

1993

8

10

克拉克

5.50

1973

1989

3

11

塔特尔—贾科比尼—克雷萨克

5.58

1858

1989

7

12

库林

5.82

1939

1986

1

13

沃塔南

5.87

1947

1991

6

14

羽根田—坎波斯

5.97

1978

1984

2

15

威斯特—科胡特克—池村

6.07

1975

1987

3

16

拉塞尔

6.13

1979

1985

1

17

怀尔德Ⅱ

6.17

1987

1990

3

18

阿雷斯特

6.23

1951

1982

14

19

科胡特克

6.23

1975

1981

2

20

福布斯

6.27

1929

1993

7

21

杜—托伊特—诺伊明—德尔波特

6.31

1941

1989

4

22

特里顿

6.34

1978

1984

2

23

宠斯—温尼克

6.36

1819

1989

20

24

坦普尔—斯威夫特

6.41

1969

1982

5

25

科普夫

6.43

1906

1989

13

26

施瓦斯曼—瓦赫曼Ⅱ

6.50

1929

1981

9

27

贾科比尼—津纳

6.52

1900

1991

11

28

沃尔夫—哈林顿

6.53

1924

1990

7

29

丘龙穆夫—杰拉西门科

6.59

1969

1988

4

30

科瓦尔Ⅱ

6.51

1979

1991

2

31

紫金山Ⅰ

6.65

1965

1991

5

32

吉克拉斯

6.68

1978

1985

1

33

比拉

6.70

1772

1852

6

34

哈林顿—威尔逊

6.70

1951

1984

1

35

雷恩穆特Ⅱ

6.74

1947

1981

6

36

约翰逊

6.76

1949

1990

7

37

博雷林

6.77

1905

1987

11

38

珀赖因—姆尔科斯

6.78

1896

1982

5

39

冈恩

6.82

1969

1982

3

40

紫金山Ⅱ

6.83

1965

1991

4

41

阿伦—里高克斯

6.83

1950

1984

6

42

哈林顿

6.80

1953

1987

3

43

斯皮塔勒

6.89

1890

1986

1

44

布鲁克斯Ⅱ

6.90

1889

1987

12

45

怀尔德Ⅲ

6.89

1980

1987

1

46

芬利

6.95

1886

1988

11

47

泰勒

6.98

1916

1990

3

48

郎莫尔

6.98

1974

1987

2

49

霍姆斯

7.06

1892

1993

50

丹尼尔

7.09

1909

1992

7

51

沙金—沙尔达彻

7.26

1949

1993

4

52

法伊

7.39

1943

1984

17

53

德·维科—斯威夫特

7.41

1844

1987

3

54

阿什不鲁克—杰克逊

7.43

1948

1992

6

55

惠普尔

7.44

1933

1993

8

56

舒斯特

7.48

1978

1992

2

57

哈林顿—艾贝尔

7.58

1954

1990

6

58

雷恩穆特Ⅰ

7.59

1928

1988

7

59

梅特卡夫

7.77

1906

1983

1

60

小岛

7.86

1970

1992

3

61

肖尔

7.88

1918

1981

1

62

格雷尔斯Ⅱ

7.94

1973

1989

3

63

阿伦

7.98

1951

1991

6

64

格雷尔斯Ⅲ

8.11

1977

1992

3

65

肖马斯

8.23

1911

1992

7

66

杰克逊—诺伊明

8.37

1936

1987

3

67

沃尔夫

8.42

1884

1992

14

68

斯默诺瓦—彻尼克

8.53

1975

1984

2

69

科马斯—索拉

8.94

1927

1987

7

70

基恩斯—克威

9.01

1963

1981

3

71

丹宁—藤川

9.01

1881

1987

2

72

斯威夫特—格雷尔斯

9.23

1889

1991

3

73

诺利明Ⅲ

10.57

1929

1993

4

74

盖尔

10.88

1927

1981

2

75

克菜莫拉

10.95

1965

1987

2

76

贝辛

11.05

1975

1986

1

77

维萨拉Ⅰ

11.28

1939

1992

6

78

斯劳特—伯纳姆

11.62

1958

1992

4

79

范·比斯布勒克

12.39

1954

1991

3

80

桑吉恩

12.52

1977

1990

1

81

怀尔德

13.29

1960

1986

2

82

塔特尔

13.68

1790

1992

11

83

切尔尼克

14.0

1978

1992

1

84

格雷尔斯Ⅰ

14.54

1973

1987

1

85

杜·托伊特Ⅰ

15.0

1944

1988

2

86

施瓦斯曼—瓦赫曼Ⅰ

15.0

1925

1989

4

87

科瓦尔

15.1

1977

1992

1

88

范·豪顿

16.1

1961

1993

1

89

诺利明Ⅰ

17.9

1913

1984

5

90

奥特麦

19.3

1942

1958

3

91

克伦梅林

27.4

1818

1984

5

92

坦普尔—塔特尔

33.2

1366

1998

4

93

斯蒂芬—奥特麦

37.7

1867

1980

3

94

威斯特费尔

61.9

1852

2038

2

95

杜比亚戈

67.0

1921

1988

1

96

奥伯斯

69.5

1815

1956

3

97

庞斯—布鲁克斯

71.9

1812

1954

3

98

布罗逊—梅特卡夫

70.6

1847

1988

3

99

德·维科

75.7

1846

1988

1

100

哈雷

76.0

-466

1986

29

101

维萨拉Ⅱ

85.4

1942

2027

1

102

斯维夫特—塔特尔

125

1862

1992

2

103

梅利什

145

1917

2062

1

104

赫歇耳—里戈利特

155

1788

2058

2

恒星的结构

  跟太阳类似,恒星辐射传来的仅是它们大气的信息,通常得不到它们内部的观测资料。

只能根据恒星的观测资料(总质量、光度、表面温度、化学成分),藉助于已知的物理规律,进行理论的演绎来计算恒星内部结构模型。

  恒星的主要成分是氢,恒星一生的大部分时间处于氢燃烧维持稳定平衡状态(“主序”阶段),其辐射功率与内部产能率保持平衡。

应当指出,像可控核电厂那样,恒星通过自身调整来达到平衡。

如果恒星产能率大于辐射功率,那么超额能量会引起星体膨胀,接着,内部温度下降,从而使对温度很敏感的热核反应的产能率迅速降低,消除了超额能量,平衡得以恢复。

另一方面,如果内部产出的能量偏少,星体就会收缩,引起内部温度升高,核反应的产能率相应增加,直至能量的得失相等。

恒星的能源

  像太阳那样,恒星在其一生的大部分时间,辐射的能源是由其中心区热核反应提供的。

很多恒星最重要的热核反应是氢核聚变为氦核(氢燃烧)。

氢燃烧有两种反应:

质子—质子反应的产能率大体上正比于温度的4次方;而碳氮循环的产能率正比于温度的18次方。

中心温度高于1.6×107K的恒星,碳氮循环占优势;中心温度较低的恒星,质子—质子反应为主。

当温度低于7×106K时,这两种反应都不起作用。

  在恒星演化的后阶段,发生其它的热核反应。

例如,温度接近2×108K时,3个氦核可聚变成一个碳核(氦燃烧):

34He→12C+γ(γ代表光子),因为α粒子就是氦原子核,这个反应又称为“3α反应”。

碳核又可通过更复杂的反应聚变成氧、钠、镁……。

碳之后的反应对恒星能量的贡献很小,它们主要的作用在于恒星内部合成了重元素。

恒星的距离

  从恒星光谱研究发现,同样光谱型的恒星中总有几条谱线的强度只随光度而异。

对于三角视差测得出距离的恒星,可由其视星等和距离算出光度或绝对星等,因而可做出以谱线强度为横坐标,以光度(绝对星等)为纵坐标的“归算曲线”。

然后对于待测距离的同一光谱型恒星,先测量其谱线强度,再利用归算曲线得出它的光度(绝对星等),进而得到它的距离,这称为“分光视差”。

用这种方法得到了几万颗恒星的距离,尤其是三角视差法无效的远星距离,但仍不适用于难观测光谱的暗恒星。

  造父变星有光变周期与光度的周光关系,可由观测某颗造父变星的光变周期来得到它的光度,进而得出距离,这称为“造父视差”。

双星观测可算出轨道要素而求得视差——称为“力学视差”。

利用星团成员的运动数据求出视差——称为“星群视差”。

迄今不仅测定出大量银河系恒星的距离,还测定出较近星系中的恒星距离。

星座与星名

  我们祖先早就给天上的亮星起了名字,有的根据神话故事,如牛郎星、织女星、天狼星、老人星等;有的依据中国二十八宿命名,如角宿一、心宿二、娄宿三、参宿四和毕宿五等;有的根据恒星的颜色命名如大火(心宿二);还有的依据恒星所在天区命名的,如天关星、北河二、南河三、天津四、五车二和南门二等。

  1603年,德国业余天文学家拜尔建议“平等对待”这些恒星,不能只给亮星起名,他提出:

每个星座中的恒星从亮到暗顺序排列,以该星座名称加一个希腊字母顺序表示。

例如猎户座α(参宿四)、猎户座β(参宿七)、猎户座γ(参宿五)、猎户座δ(参宿三)等。

某个星座的恒星若超过了24个或者为了方便,就用星座的名称后加阿拉伯数字表示。

如天鹅座61星、天鹅座32星、双子座65星及天兔座17星等。

天文学家有时用星表的序号来表示星名,如猎户座α星也叫HD39801(HD星表39801号)。

  人们根据一群星构成的图形加上想象,把恒星划分成许多星座。

中国古代把天空划分成三垣二十八宿,“垣”是墙的意思,“宿”是住址的意思。

日月穿行在黄道附近,黄道附近的星被分成28个大小不等的星区,叫28宿。

月球在绕地球公转运动过程中,每日从西往东经过一宿。

28宿以外的星区划分为三垣:

紫微垣、太微垣和天市垣。

紫微垣包括北天极附近的星区,太微垣大致包括室女座、后发座和狮子座,天室垣包括蛇夫座、武仙座、巨蛇座和天鹰座等星座。

  1928年,国际天文学联合会决定,将全天划分为88个星座,其中沿黄道天区的有12个星座,因为太阳的周年视运动穿过它们,所以也叫黄道12宫。

它们是双鱼座、白羊座、金牛座、双子座、巨蟹座、狮子座、室女座、天秤座、天蝎座、人马座、摩羯座和宝瓶座。

  北半天球有29个星座,如小熊座、大熊座、天龙座、天琴座、天鹰座、天鹅座、武仙座、狐狸座、飞马座、蝎虎座、北冕座、猎犬座、后发座、牧夫座、仙王座、仙后座、仙女座、英仙座、猎户座等。

南半天球有47个星座,入大犬座、船底座、半人马座、鲸鱼座、波江座、长蛇座、天兔座、麒麟座、蛇夫座、盾牌座、船帆座和飞鱼座等。

  这88个星座形状各异,色彩纷呈,人们按照它们组合的形状把它们想象成不同的人物和动物等。

并给每个星座都联想了许多美丽动听的故事。

比如中国民间早就传说的牛郎星和织女星的故事。

希腊故事把牛郎星和周围的星连在一起,认为像老鹰叫老鹰座,把织女星和周围的星想象为一架琴叫天琴座。

天鹅座中亮的六颗星,古希腊神话故事把它说成一只在银河上空低飞的天鹅,所以叫天鹅座。

行星的形成

1755年德国哲学家康德在《自然通史和天体论》中提出宇宙星球形成演变过程的“星云假说”,之后,随着时间的推移,人类观测到的大量新天体已初步印证了“星云假说”中星球起源于星云的早期演变概念的部分合理性。

但星球演变的全过程从白矮星之后却留下了一段空白。

星空中那些绚丽多彩的云雾状“星云”、拖着长尾的“彗星”以及和我们息息相关的太阳、月亮为什么形态各异,它们相互之间是怎样演变呢?

其实,像自然界所有事物一样,星球也有从诞生到衰亡的发展过程,它们之所以有不同的形态是由于各星球正处在演变过程中不同的阶段,元素的组成比例不同,光谱分析证明星球都是由相同物质构成的(即元素周期表中110种元素)。

当一个星球主要由氢、氧类化学性质不稳定的元素构成时,天体的原子核反应剧烈,这个天体即处在天体演变的初期——恒星阶段;当一个星球中硅、铁类化学性质稳定的元素所占比例变的较大时,其原子核反应逐渐变弱时,便处在星球演变的后期——行星阶段。

“行星”正是由“恒星”演变形成的,而“彗星”、“流星”又是由“行星”演变而来。

宇宙中每个星球的演变都要经过“黑洞”、星云、恒星、红巨星、白矮星、行星、彗星、小行星几个阶段。

星球既有共同性,又有差异,即使处于同一演变阶段也没有形态完全一样的,如自然界的昆虫,在它不同的生长阶段各是卵、幼虫、蛹、蛾等完全不同的形态。

根据已知的天文资料对宇宙星球的演变过程阐述如下:

宇宙由不断运动的物质组成,天体物质曲线运动时由于方向、速度的差异,会产生无数大小不一的磁场旋涡(即“黑洞”),当恒星级“黑洞“中的物质凝集向一个方向以极快速度作有序运动时,产生的能量和引力会吸引宇宙中弥漫的氢、氧类气体物质和硅、铁类尘埃物质,形成围绕”黑洞“的圆形气体尘埃环,原始的星球——“星云”便诞生了。

“星云”阶段是由稀薄气体和尘埃凝聚成的呈环状或团状的形态,随着不断吸引吞噬周围物质,“星云”的体积、密度达到一定临界值,具备了发生氢原子核聚变的两个重要条件(一是天体达到相当大体积;二是天体中氢元素达到一定密度)时。

在星球运动产生的巨大摩擦作用下,“星云”内物质密集的中心区域(星核)的氢原子开始发生热核反应,从而爆发出巨大能量,“星云”就逐步演变成为可以自身发出强烈光和热的——“恒星”。

“恒星”的体积庞大,氢元素占绝大部分,原子核反应剧烈,能量大、辐射强,具有强大的磁场和引力,能吸引一些质量相对较小的天体,形成以它为中心的星系。

“恒星”阶段的演变过程起码要持续上百亿年,太阳就处在恒星演变的中期阶段。

随着恒星中氢元素逐渐聚变为核反应较弱的元素氦,恒星的原子核反应越来越弱,最后演变成为——“红巨星”。

“红巨星”的基本特征是:

因星球内部引力减小,构成物质向外膨胀,体积变得非常大,但能量和辐射却比恒星小,“红巨星”表层氦、氧元素比例增大,所以发光发热程度比恒星低得多,还没有形成固态外壳。

当“红巨星”的表层原子核反应逐渐停止,温度降低到一定程度时,由于内外物质结构的不平衡,会发生从内向外的大爆发(“超新星”),星球的表层物质散失到太空中后,那些原来在超高温环境中呈气态和液态熔点高的硅、铁类元素,由于温度降低成为固体状态,于是在最先冷却的外层开始形成固态的外壳,就逐渐演变成只有微弱光辐射的——“白矮星”

“白矮星”由于外壳的冷却收缩,体积大大缩小(可以缩小几十万倍),大量氢元素被压缩在固态外壳之中,因此,白矮星虽然体积小但相对质量却很大,磁场和引力都很强。

之后随着与其它恒星等天体之间互相吸引力和离心力平衡的改变而沦为恒星的卫星——不发光的“行星”。

从“白矮星”到“行星”阶段是一个天体固态外壳不断膨胀,由氢、氧类元素组成的呈气态、液态的表层物质不断减少的过程。

行星初期是像木星、土星那样的固体星球表面有极厚浓密大气层包围的形态。

到了像地球这样的行星中期,由于表层温度继续降低,有了液态水和温度等适宜条件,行星上会有生命出现和存在。

行星内部原子核反应产生的巨大能量,会逐渐积聚起很大压力,所以,每隔一段时期,在外壳承受不住时,内部能量冲破外壳形成大爆发,大量氢、氧类元素散发到宇宙中,同时行星的体积扩大,固态外壳变厚,表层环境会发生巨变。

经过了多次大小爆发后,行星内部原子核反应越来越弱,就进入火星那样的行星后期阶段。

现在火星表面虽然有稀薄大气层,地表还有少量固态水(白色极冠)存在,但已不具备维持生命的环境。

近几年的探索发现火星上确有从前的河流痕迹,今后有可能找到曾经存在过生命的确凿证据。

当星球内氢、氧类元素基本消失,原子核反应基本结束,自身吸引力逐步削弱,星球组成物质的离心力超过其吸引力时,平衡被打破,星球便开始四分五裂,直至分解成许多小的碎块,就进入星球演变的最后阶段,彗星、流星是这一阶段的主要形态。

“彗星”由于彗核的吸引力作用可以形成围绕恒星运动的组团形态(如哈雷彗星),最终将完全分散成单个的大小不等的碎块天体——“流星”。

据观测,这种天体碎块(也称小行星)在宇宙中大量存在。

当宇宙中分散的物质在星际磁场旋涡(黑洞)吸引下凝聚在一起时,新一轮的星球演变又开始了。

以上只是按星球演变过程作一个大致的顺序排列,就像把人的一生分为少年、青年、中年、老年几个阶段一样,我们根据这个排列顺序可以探索解释宇宙中更多的天体奥秘,确定各天体在演变过程中所处的阶段,从而结束宇宙天体研究中孤立杂乱的状态,把盲目探索引导到按照规律去研究的道路上。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2