SPSS教程第13章.docx
《SPSS教程第13章.docx》由会员分享,可在线阅读,更多相关《SPSS教程第13章.docx(26页珍藏版)》请在冰点文库上搜索。
SPSS教程第13章
第十三章非参数检验
第一节Chi-Square过程
13.1.1主要功能
13.1.2实例操作
第二节Binomial过程
13.2.1主要功能
13.2.2实例操作
第三节Runs过程
13.3.1主要功能
13.3.2实例操作
第四节1-SampleK-S过程
13.4.1主要功能
13.4.2实例操作
第五节2IndependentSamples过程
13.5.1主要功能
13.5.2实例操作
第六节kIndependentSamples过程
13.6.1主要功能
13.6.2实例操作
第七节2RelatedSamples过程
13.7.1主要功能
13.7.2实例操作
第八节KRelatedSamples过程
13.8.1主要功能
13.8.2实例操作
许多统计分析方法的应用对总体有特殊的要求,如t检验要求总体符合正态分布,F检验要求误差呈正态分布且各组方差整齐,等等。
这些方法常用来估计或检验总体参数,统称为参数统计。
但许多调查或实验所得的科研数据,其总体分布未知或无法确定,这时做统计分析常常不是针对总体参数,而是针对总体的某些一般性假设(如总体分布),这类方法称非参数统计(Nonparametrictests)。
非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。
第一节Chi-Square过程
13.1.1主要功能
调用此过程可对样本数据的分布进行卡方检验。
卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数是否相符。
返回目录
返回全书目录
13.1.2实例操作
[例13-1]某地一周内各日死亡数的分布如下表,请检验一周内各日的死亡危险性是否相同?
周日
死亡数
一
二
三
四
五
六
日
11
19
17
15
15
16
19
13.1.2.1数据准备
激活数据管理窗口,定义变量名:
各周日为day,死亡数为death。
按顺序输入数据,结果见图13.1。
激活Data菜单选WeightCases...命令项,弹出WeightCases对话框(如图13.2),选death点击钮使之进入FrequencyVariable框,定义死亡数为权数,再点击OK钮即可。
图13.1数据录入窗口
图13.2数据加权对话框
13.1.2.2统计分析
激活Statistics菜单选NonparametricTests中的Chi-Square...命令项,弹出Chi-SquareTest对话框(图13.3)。
现欲对一周内各日的死亡数进行分布分析,故在对话框左侧的变量列表中选day,点击钮使之进入TestVariableList框,点击OK钮即可。
图13.3卡方检验对话框
13.1.2.3结果解释
在结果输出窗口中将看到如下统计数据:
运算结果显示一周内各日死亡的理论数(Expected)为15.71,即一周内各日死亡均数;还算出实际死亡数与理论死亡数的差值(Residual);卡方值χ2=3.4000,自由度数(D.F.)=6,P=0.7572,可认为一周内各日的死亡危险性是相同的。
DAY
Cases
CategoryObservedExpectedResidual
1.001115.71-4.71
2.001915.713.29
3.001715.711.29
4.001515.71-.71
5.001315.71-2.71
6.001615.71.29
7.001915.713.29
---
Total110
Chi-SquareD.F.Significance
3.40006.7572
返回目录
返回全书目录
第二节Binomial过程
13.2.1主要功能
有些总体只能划分为两类,如医学中的生与死、患病的有与无。
从这种二分类总体中抽取的所有可能结果,要么是对立分类中的这一类,要么是另一类,其频数分布称为二项分布。
调用Binomial过程可对样本资料进行二项分布分析。
返回目录
返回全书目录
13.2.2实例操作
[例13-2]某地某一时期内出生40名婴儿,其中女性12名(定Sex=0),男性28名(定Sex=1)。
问这个地方出生婴儿的性比例与通常的男女性比例(总体概率约为0.5)是否不同?
13.2.2.1数据准备
激活数据管理窗口,定义性别变量为sex。
按出生顺序输入数据,男性为1,女性为0。
13.2.2.2统计分析
激活Statistics菜单选NonparametricTests中的BinomialTest...命令项,弹出BinomialTest对话框(图13.4)。
在对话框左侧的变量列表中选sex,点击钮使之进入TestVariableList框,在TestProportion框中键入0.50,再点击OK钮即可。
图13.4二项分布检验对话框
13.2.2.3结果解释
在结果输出窗口中将看到如下统计数据:
二项分布检验表明,女婴12名,男婴28名,观察概率为0.7000(即男婴占70%),检验概率为0.5000,二项分布检验的结果是双侧概率为0.0177,可认为男女比例的差异有高度显著性,即与通常0.5的性比例相比,该地男婴比女婴明显为多。
SEX
Cases
TestProp.=.5000
28=1.00Obs.Prop.=.7000
12=.00
--ZApproximation
40Total2-TailedP=.0177
返回目录
返回全书目录
第三节Runs过程
13.3.1主要功能
依时间或其他顺序排列的有序数列中,具有相同的事件或符号的连续部分称为一个游程。
调用Runs过程可进行游程检验,即用于检验序列中事件发生过程的随机性分析。
返回目录
返回全书目录
13.3.2实例操作
[例13-3]某村发生一种地方病,其住户沿一条河排列,调查时对发病的住户标记为“1”,对非发病的住户标记为“0”,共17户:
01100010010000110010000101
问病户的分布排列是呈聚集趋势,还是随机分布?
13.3.2.1数据准备
激活数据管理窗口,定义住户变量为epi。
按住户顺序输入数据,发病的住户为1,非发病的住户为0。
13.3.2.2统计分析
激活Statistics菜单选NonparametricTests中的RunsTest...项,弹出RunsTest对话框(图13.5)。
在对话框左侧的变量列表中选epi,点击钮使之进入TestVariableList框。
在临界割点CutPoint框中有四个选项:
图13.5游程检验对话框
1、Median:
中位数作临界割点,其值在临界割点之下的为一类,大于或等于临界割点的为另一类;
2、Mode:
众数作临界割点,其值在临界割点之下的为一类,大于或等于临界割点的为另一类;
3、Mean:
均数作临界割点,其值在临界割点之下的为一类,大于或等于临界割点的为另一类;
4、Custom:
用户指定临界割点,其值在临界割点之下的为一类,大于或等于临界割点的为另一类;
本例选Custom项,在其方框中键入1(根据需要选项,本例是0、1二分变量,故临界割点值用1),再点击OK钮即可。
13.3.2.3结果解释
在结果输出窗口中将看到如下统计数据:
检验结果可见本例游程个数为14,检验临界割点值(Testvalue)=1.00,小于1.00者有17个案例,而大于或等于1.00者有9个案例。
Z=0.3246,双侧P=0.7455。
所以认为此地方病的病户沿河分布的情况无聚集性,而是呈随机分布。
EPI
Runs:
14Testvalue=1.00
Cases:
17LT1.00
9GE1.00Z=.3246
--
26Total2-TailedP=.7455
返回目录
返回全书目录
第四节1-SampleK-S过程
13.4.1主要功能
调用此过程可对单样本进行Kolmogorov-SmirnovZ检验,它将一个变量的实际频数分布与正态分布(Normal)、均匀分布(Uniform)、泊松分布(Poisson)进行比较。
返回目录
返回全书目录
13.4.2实例操作
[例13-4]某地正常成年男子144人红细胞计数(万/立方毫米)的频数资料如下,问该资料的频数是否呈正态分布?
红细胞计数
人数
红细胞计数
人数
420-
440-
460-
480-
500-
520-
2
4
7
16
20
25
540-
560-
580-
600-
620-
640-
24
22
16
2
6
1
13.4.2.1数据准备
激活数据管理窗口,定义频数变量名为f,依次输入人数资料。
13.4.2.2统计分析
激活Statistics菜单选NonparametricTests中的1-SampleK-S...命令项,弹出One-SampleKolmogorov-SmirnovTest对话框(图13.6)。
在对话框左侧的变量列表中选f,点击钮使之进入TestVariableList框,在TestDistribution框中选Normal项,表明与正态分布形式相比较,再点击OK钮即可。
图13.6单样本Kolmogorov-SmirnovZ检验对话框
13.4.2.3结果解释
在结果输出窗口中将看到如下统计数据:
K-S正态性检验的结果显示,Z值=0.7032,双侧P值=0.7060,可认为该地正常成年男子的红细胞计数符合正态分布。
F
Testdistribution-NormalMean:
12.0000
StandardDeviation:
9.3808
Cases:
12
Mostextremedifferences
AbsolutePositiveNegativeK-SZ2-TailedP
.20298.20298-.16509.7032.7060
返回目录
返回全书目录
第五节2IndependentSamples过程
13.5.1主要功能
调用此过程可对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
返回目录
返回全书目录
13.5.2实例操作
[例13-5]调查某厂的铅作业工人7人和非铅作业工人10人的血铅值(μg/100g)如下,问两组工人的血铅值有无差别?
非铅作业组
铅作业组
556791213151821
17182025344344
13.5.2.1数据准备
激活数据管理窗口,定义分组变量为group(非铅作业组为1,铅作业组为2),血铅值为Pb。
按顺序输入数据。
13.5.2.2统计分析
激活Statistics菜单选NonparametricTests中的2IndependentSamples...命令项,弹出Two-Independent-Samples-Test对话框(图13.7)。
在对话框左侧的变量列表中选Pb,点击钮使之进入TestVariableList框;选group,点击钮使之进入GroupingVariable框,点击DefineGroups...钮,在弹出的TwoIndependentSamples:
DefineGroups对话框内定义Group1为1,Group2为2,之后点击Continue钮返回Two-Independent-Samples-Test对话框;在TestType框中有四种检验方法:
图13.7两独立样本检验对话框
Mann-WhitneyU:
主要用于判别两个独立样本所属的总体是否有相同的分布;
Kolmogorov-SmirnovZ:
推测两个样本是否来自具有相同分布的总体;
Mosesextremereactions:
检验两个独立样本之观察值的散布范围是否有差异存在,以检验两个样本是否来自具有同一分布的总体;
Wald-Wolfowitzruns:
考察两个独立样本是否来自具有相同分布的总体。
本例选Mann-WhitneyU检验方法,之后点击OK钮即可。
13.5.2.3结果解释
在结果输出窗口中将看到如下统计数据:
结果表明,第1组的平均秩次(MeanRank)为5.95,第2组的平均秩次为13.36,U=4.5,W=93.5,精确双侧概率P=0.0012,可认为铅作业组工人的血铅值高于非铅作业组。
PBbyGROUP
MeanRankCases
5.9510GROUP=1
13.367GROUP=2
--
17Total
ExactCorrectedforties
UW2-TailedPZ2-TailedP
4.593.5.0012-2.9801.0029
返回目录
返回全书目录
第六节kIndependentSamples过程
13.6.1主要功能
调用此过程可对多个独立样本进行中位数检验和Kruskal-WallisH检验。
返回目录
返回全书目录
13.6.2实例操作
[例13-6]随机抽样得以下三组人的血桨总皮质醇测定值(μg/L),试比较有无差异?
正常人
单纯性肥胖
皮质醇增多症
0.4
1.9
2.2
2.5
2.8
3.1
3.7
3.9
4.6
7.0
0.6
1.2
2.0
2.4
3.1
4.1
5.0
5.9
7.4
13.6
9.8
10.2
10.6
13.0
14.0
14.8
15.6
15.6
21.6
24.0
13.6.2.1数据准备
激活数据管理窗口,定义分组变量为group(正常人为1,单纯性肥胖为2,皮质醇增多症为3),总皮质醇测定值为pzc。
按顺序输入数据。
13.6.2.2统计分析
激活Statistics菜单选NonparametricTests中的kIndependentSamples...项,弹出TestsforSeveralIndependentSamples对话框(图13.8)。
在对话框左侧的变量列表中选pzc,点击钮使之进入TestVariableList框。
选group,点击钮使之进入GroupingVariable框,点击DefineRange...钮,在弹出的KIndependentSamples:
DefineRange对话框内定义Mininum为1,Maxinum为2,之后点击Continue钮返回Two-Independent-Samples-Test对话框。
在TestType框中有两个检验方法的选项:
Kruskal-WallisH为单向方差分析,检验多个样本在中位数上是否有差异,Median为中位数检验,检验多个样本是否来自具有相同中位数的总体;本例选Kruskal-WallisH项。
之后点击OK钮即可。
图13.8多样本资料的秩和检验对话框
13.6.2.3结果解释
在结果输出窗口中将看到如下统计数据:
结果表明,1至3组的平均秩次(MeanRank)分别为9.65、11.75、25.10,χ2值(即H值)为18.1219,P=0.0001;可认为三组人的血桨总皮质醇测定值有差异,根据本例情况可看出皮质醇增多症组高于其他两组人。
PZCbyGROUP
MeanRankCases
9.6510GROUP=1
11.7510GROUP=2
25.1010GROUP=3
--
30TotalCorrectedforties
Chi-SquareD.F.SignificanceChi-SquareD.F.Significance
18.12192.000118.13002.0001
返回目录
返回全书目录
第七节2RelatedSamples过程
13.7.1主要功能
调用此过程可对两个相关样本资料(如配对、配伍资料)进行秩和检验。
返回目录
返回全书目录
13.7.2实例操作
[例13-7]研究饲料中缺乏VitE对大鼠肝中VitA含量的关系,将大鼠按性别相同、体重相近的原则配成8对,并将每对大鼠随机分为2组(正常饲料组、VitE缺乏饲料组),一定时间后杀死大鼠,测定肝中VitA含量,结果如下表,问:
饲料中缺乏VitE对大鼠肝中VitA含量有无影响?
大鼠对别
正常饲料组
VitE缺乏饲料组
1
2
3
4
5
6
7
8
37.2
20.9
31.4
41.4
39.8
39.3
36.1
31.9
25.7
25.1
18.8
33.5
34.0
28.3
26.2
18.3
13.7.2.1数据准备
激活数据管理窗口,定义正常饲料组变量名为va1,VitE缺乏饲料组变量名为va2,按顺序输入数据。
13.7.2.2统计分析
激活Statistics菜单选NonparametricTests中2RelatedSamples...项,弹出Two-Related-SamplesTests对话框(图13.9)。
在对话框左侧的变量列表中选va1,在CurrentSelections栏的Variable1处出现va1,选va2,在CurrentSelections栏的Variable2处出现va2,然后点击钮使va1-va2(表明是配对变量)进入TestPair(s)List框。
在TestType框中有三种检验方法:
图13.9两相关样本的秩和检验对话框
1、Wilcoxon:
配对符号等级秩次检验,
2、Sign:
符号检验;
3、McNemar:
以研究对象作自身对照,检验其“前后”的变化是否显著,该法适用于相关的二分变量数据。
本例选Wilcoxon和Sign两项。
点击Options...钮,弹出Two-Related-Samples:
Options
对话框,在Statistics栏中选Decriptive项,要求计算均数、标准差等指标,点击Continue钮返回Two-Related-SamplesTests对话框,之后点击OK钮即可。
13.7.2.3结果解释
在结果输出窗口中将看到如下统计数据:
首先显示两变量va1和va2的例数、均数、标准差、最大值和最小值;配对符号秩和检验(WilcoxonMatched-PairsSigned-RanksTest)结果,其平均秩分别为5.00和1.00,Z=-2.3805,双侧P=0.0173,可认为两组大鼠肝中VitA含量有差别,饲料中缺乏VitE会使大鼠肝中VitA含量降低;但符号检验(SignTest)的结果,双侧P=0.0703,则认为两组大鼠肝中VitA含量无差别。
在这种情况下,应取配对符号秩和检验(Wilcoxon)结果,因两法比较之下,配对符号秩和检验较为敏感,效率较高。
NMeanStdDevMinimumMaximum
VA1834.750006.6485220.9041.40
VA2826.237505.8206418.3034.00
-----WilcoxonMatched-PairsSigned-RanksTest
VA1
withVA2
MeanRankCases
5.007-Ranks(VA2LTVA1)
1.001+Ranks(VA2GTVA1)
0Ties(VA2EQVA1)
--
8Total
Z=-2.38052-TailedP=.0173
-----SignTest
VA1
withVA2
Cases
7-Diffs(VA2LTVA1)
1+Diffs(VA2GTVA1)(Binomial)
0Ties2-TailedP=.0703
--
8Total
返回目录
返回全书目录
第八节KRelatedSamples过程
13.8.1主要功能
调用此过程可对多个相关样本资料(如配伍资料)进行秩和检验。
返回目录
返回全书目录
13.8.2实例操作
[例13-8]用某药治疗血吸虫病患者,在治疗前和治疗后一周、二周和四周各测定7名患者血清SGPT值的变化,以观察该药对肝功能的影响,结果如下表,问:
患者四个阶段的血清SGPT值有无不同?
患者编号
治疗前
治疗后
一周
二周
四周
1
2
3
4
5
6
7
63
90
54
45
54
72
64
188
238
300
140
175
300
207
138
220
83
213
150
163
185
54
144
92
100
36
90
87
13.8.2.1数据准备
激活数据管理窗口,定义变量名:
治疗前为before、治疗后一周为w1、二周为w2、四周为w4,按顺序输入各组SGPT数据。
13.8.2.2统计分析
激活Statistics菜单选NonparametricTests中的kRelatedSamples...命令项,弹出TestsforServeralRelatedSamples对话框(图13.10)。
在对话框左侧的变量列表中选before、w1、w2和w4,