基于单片机的温度控制外文文献及中文翻译.doc

上传人:聆听****声音 文档编号:267047 上传时间:2023-04-28 格式:DOC 页数:19 大小:506KB
下载 相关 举报
基于单片机的温度控制外文文献及中文翻译.doc_第1页
第1页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第2页
第2页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第3页
第3页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第4页
第4页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第5页
第5页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第6页
第6页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第7页
第7页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第8页
第8页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第9页
第9页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第10页
第10页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第11页
第11页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第12页
第12页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第13页
第13页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第14页
第14页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第15页
第15页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第16页
第16页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第17页
第17页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第18页
第18页 / 共19页
基于单片机的温度控制外文文献及中文翻译.doc_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

基于单片机的温度控制外文文献及中文翻译.doc

《基于单片机的温度控制外文文献及中文翻译.doc》由会员分享,可在线阅读,更多相关《基于单片机的温度控制外文文献及中文翻译.doc(19页珍藏版)》请在冰点文库上搜索。

基于单片机的温度控制外文文献及中文翻译.doc

TemperatureControlUsingaMicrocontroller:

AnInterdisciplinaryUndergraduateEngineeringDesignProject

JamesS.McDonald

DepartmentofEngineeringScience

TrinityUniversity

SanAntonio,TX78212

Abstract:

Thispaperdescribesaninterdisciplinarydesignprojectwhichwasdoneundertheauthor’ssupervisionbyagroupoffourseniorstudentsintheDepartmentofEngineeringScienceatTrinityUniversity.Theobjectiveoftheprojectwastodevelopatemperaturecontrolsystemforanair-filledchamber.Thesystemwastoallowentryofadesiredchambertemperatureinaprescribedrangeandtoexhibitovershootandsteady-statetemperatureerroroflessthan1degreeKelvinintheactualchambertemperaturestepresponse.Thedetailsofthedesigndevelopedbythisgroupofstudents,basedonaMotorolaMC68HC05familymicrocontroller,aredescribed.Thepedagogicalvalueoftheproblemisalsodiscussedthroughadescriptionofsomeofthekeystepsinthedesignprocess.Itisshownthatthesolutionrequiresbroadknowledgedrawnfromseveralengineeringdisciplinesincludingelectrical,mechanical,andcontrolsystemsengineering.

1Introduction

Thedesignprojectwhichisthesubjectofthispaperoriginatedfromareal-worldapplication.AprototypeofamicroscopeslidedryerhadbeendevelopedaroundanOmegaTMmodelCN-390temperaturecontroller,andtheobjectivewastodevelopacustomtemperaturecontrolsystemtoreplacetheOmegasystem.Themotivationwasthatacustomcontrollertargetedspecificallyfortheapplicationshouldbeabletoachievethesamefunctionalityatamuchlowercost,astheOmegasystemisunnecessarilyversatileandequippedtohandleawidevarietyofapplications.

ThemechanicallayoutoftheslidedryerprototypeisshowninFigure1.Themainelementofthedryerisalarge,insulated,air-filledchamberinwhichmicroscopeslides,eachwithatissuesampleencasedinparaffin,canbesetoncaddies.Inorderthattheparaffinmaintaintheproperconsistency,thetemperatureintheslidechambermustbemaintainedatadesired(constant)temperature.Asecondchamber(theelectronicsenclosure)housesaresistiveheaterandthetemperaturecontroller,andafanmountedontheendofthedryerblowsairacrosstheheater,carryingheatintotheslidechamber.Thisdesignprojectwascarriedoutduringacademicyear1996–97byfourstudentsundertheauthor’ssupervisionasaSeniorDesignprojectintheDepartmentofEngineeringScienceatTrinityUniversity.Thepurposeofthispaperis

todescribetheproblemandthestudents’solutioninsomedetail,andtodiscusssomeofthepedagogicalopportunitiesofferedbyaninterdisciplinarydesignprojectofthistype.Thestudents’ownreportwaspresentedatthe1997NationalConferenceonUndergraduateResearch[1].Section2givesamoredetailedstatementoftheproblem,includingperformancespecifications,andSection3describesthestudents’design.Section4makesupthebulkofthepaper,anddiscussesinsomedetailseveralaspectsofthedesignprocesswhichofferuniquepedagogicalopportunities.Finally,Section5offerssomeconclusions.

2ProblemStatement

ThebasicideaoftheprojectistoreplacetherelevantpartsofthefunctionalityofanOmegaCN-390temperaturecontrollerusingacustom-designedsystem.Theapplicationdictatesthattemperaturesettingsareusuallykeptconstantforlongperiodsoftime,butit’snonethelessimportantthatstepchangesbetrackedina“reasonable”manner.Thusthemainrequirementsboildownto

·allowingachambertemperatureset-pointtobeentered,

·displayingbothset-pointandactualtemperatures,and

·trackingstepchangesinset-pointtemperaturewithacceptablerisetime,steady-stateerror,andovershoot.

AlthoughnotexplicitlyapartofthespecificationsinTable1,itwasclearthatthecustomerdesireddigitaldisplaysofset-pointandactualtemperatures,andthatset-pointtemperatureentryshouldbedigitalaswell(asopposedto,say,throughapotentiometersetting).

3SystemDesign

Therequirementsfordigitaltemperaturedisplaysandsetpointentryaloneareenoughtodictatethatamicrocontrollerbaseddesignislikelythemostappropriate.Figure2showsablockdiagramofthestudents’design.

Themicrocontroller,aMotorolaMC68HC705B16(6805forshort),istheheartofthesystem.Itacceptsinputsfromasimplefour-keykeypadwhichallowspecificationoftheset-pointtemperature,anditdisplaysbothset-pointandmeasuredchambertemperaturesusingtwo-digitseven-segmentLEDdisplayscontrolledbyadisplaydriver.Alltheseinputsandoutputsareaccommodatedbyparallelportsonthe6805.Chambertemperatureissensedusingapre-calibratedthermistorandinputviaoneofthe6805’sanalog-to-digitalinputs.Finally,apulse-widthmodulation(PWM)outputonthe6805isusedtodrivearelaywhichswitcheslinepowertotheresistiveheateroffandon.

Figure3showsamoredetailedschematicoftheelectronicsandtheirinterfacingtothe6805.Thekeypad,aStorm3K041103,hasfourkeyswhichareinterfacedtopinsPA0{PA3ofPortA,configuredasinputs.Onekeyfunctionsasamodeswitch.Twomodesaresupported:

setmodeandrunmode.Insetmodetwooftheotherkeysareusedtospecifytheset-pointtemperature:

oneincrementsitandonedecrements.Thefourthkeyisunusedatpresent.TheLEDdisplaysaredrivenbyaHarrisSemiconductorICM7212displaydriverinterfacedtopinsPB0{PB6ofPortB,configuredasoutputs.Thetemperature-sensingthermistordrives,throughavoltagedivider,pinAN0(oneofeightanaloginputs).Finally,pinPLMA(oneoftwoPWMoutputs)drivestheheaterrelay.

Softwareonthe6805implementsthetemperaturecontrolalgorithm,maintainsthetemperaturedisplays,andalterstheset-pointinresponsetokeypadinputs.Becauseitisnotcompleteatthiswriting,softwarewillnotbediscussedindetailinthispaper.Thecontrolalgorithminparticularhasnotbeendetermined,butitislikelytobeasimpleproportionalcontrollerandcertainlynotmorecomplexthanaPID.SomecontroldesignissueswillbediscussedinSection4,however.

4TheDesignProcess

Althoughessentiallytheprojectisjusttobuildathermostat,itpresentsmanynicepedagogicalopportunities.Theknowledgeandexperiencebaseofaseniorengineeringundergraduatearejustenoughtobringhimorhertothebrinkofasolutiontovariousaspectsoftheproblem.Yet,ineachcase,realworldconsiderationscomplicatethesituationsignificantly.

Fortunatelythesecomplicationsarenotinsurmountable,andtheresultisaverybeneficialdesignexperience.Theremainderofthissectionlooksatafewaspectsoftheproblemwhichpresentthetypeoflearningopportunityjustdescribed.Section4.1discussessomeofthefeaturesofasimplifiedmathematicalmodelofthethermalpropertiesofthesystemandhowitcanbeeasilyvalidatedexperimentally.Section4.2describeshowrealisticcontrolalgorithmdesignscanbearrivedatusingintroductoryconceptsincontroldesign.Section4.3pointsoutsomeimportantdeficienciesofsuchasimplifiedmodeling/controldesignprocessandhowtheycanbeovercomethroughsimulation.Finally,Section4.4givesanoverviewofsomeofthemicrocontroller-relateddesignissueswhichariseandlearningopportunitiesoffered.

4.1MathematicalModel

Lumped-elementthermalsystemsaredescribedinalmostanyintroductorylinearcontrolsystemstext,andjustthissortofmodelisapplicabletotheslidedryerproblem.Figure4showsasecond-orderlumped-elementthermalmodeloftheslidedryer.ThestatevariablesarethetemperaturesTaoftheairintheboxandTboftheboxitself.Theinputstothesystemarethepoweroutputq(t)oftheheaterandtheambienttemperatureT¥.maandmbarethemassesoftheairandthebox,respectively,andCaandCbtheirspecificheats.μ1andμ2areheattransfercoefficientsfromtheairtotheboxandfromtheboxtotheexternalworld,respectively.

It’snothardtoshowthatthe(linearized)stateequationscorrespondingtoFigure4are

TakingLaplacetransformsof

(1)and

(2)andsolvingforTa(s),whichistheoutputofinterest,givesthefollowingopen-loopmodelofthethermalsystem:

whereKisaconstantandD(s)isasecond-orderpolynomial.K,tz,andthecoefficientsofD(s)arefunctionsofthevariousparametersappearingin

(1)and

(2).Ofcoursethevariousparametersin

(1)and

(2)arecompletelyunknown,butit’snothardtoshowthat,regardlessoftheirvalues,D(s)hastworealzeros.Thereforethemaintransferfunctionofinterest(whichistheonefromQ(s),sincewe’llassumeconstantambienttemperature)canbewritten

Moreover,it’snottoohardtoshowthat1=tp1<1=tz<1=tp2,i.e.,thatthezeroliesbetweenthetwopoles.Bothoftheseareexcellentexercisesforthestudent,andtheresultistheopenlooppole-zerodiagramofFigure5.

Obtainingacompletethermalmodel,then,isreducedtoidentifyingtheconstantKandthethreeunknowntimeconstantsin(3).Fourunknownparametersisquiteafew,butsimpleexperimentsshowthat1=tp1_1=tz;1=tp2sothattz;tp2_0aregoodapproximations.Thustheopen-loopsystemisessentiallyfirst-orderandcanthereforebewritten

(wherethesubscriptp1hasbeendropped).

Simpleopen-loopstepresponseexperimentsshowthat,forawiderangeofinitialtemperaturesandheatinputs,K_0:

14_=Wandt_295s.1

4.2ControlSystemDesign

Usingthefirst-ordermodelof(4)fortheopen-looptransferfunctionGaq(s)andassumingforthemomentthatlinearcontroloftheheaterpoweroutputq(t)ispossible,theblockdiagramofFigure6representstheclosed-loopsystem.Td(s)isthedesired,orset-point,tem

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2