电动机的旋转原理.docx

上传人:b****1 文档编号:274804 上传时间:2023-04-28 格式:DOCX 页数:12 大小:20.89KB
下载 相关 举报
电动机的旋转原理.docx_第1页
第1页 / 共12页
电动机的旋转原理.docx_第2页
第2页 / 共12页
电动机的旋转原理.docx_第3页
第3页 / 共12页
电动机的旋转原理.docx_第4页
第4页 / 共12页
电动机的旋转原理.docx_第5页
第5页 / 共12页
电动机的旋转原理.docx_第6页
第6页 / 共12页
电动机的旋转原理.docx_第7页
第7页 / 共12页
电动机的旋转原理.docx_第8页
第8页 / 共12页
电动机的旋转原理.docx_第9页
第9页 / 共12页
电动机的旋转原理.docx_第10页
第10页 / 共12页
电动机的旋转原理.docx_第11页
第11页 / 共12页
电动机的旋转原理.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

电动机的旋转原理.docx

《电动机的旋转原理.docx》由会员分享,可在线阅读,更多相关《电动机的旋转原理.docx(12页珍藏版)》请在冰点文库上搜索。

电动机的旋转原理.docx

电动机的旋转原理

电动机知识

电动机的旋转原理

目前较常用的交流电动机有两种:

1、三相异步电动机。

2、单相交流电动机。

第一种多用在工业上,而第二种多用在民用电器上。

一、三相异步电动机的旋转原理

三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。

我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。

图中分四个时刻来描述旋转磁场的产生过程。

电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。

旋转磁场的转速为:

n=60f/P式中f为电源频率、P是磁场的磁极对数、n的单位是:

每分钟转数。

根据此式我们知道,电动机的转速与磁极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:

1、改变磁极法;2、变频法。

以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。

二、单相交流电动机的旋转原理

单相交流电动机只有一个绕组,转子是鼠笼式的。

当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。

这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。

当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。

这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。

要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。

这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。

在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。

因此,起动绕组可以做成短时工作方式。

但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变

电容器串接的位置来实现。

观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。

相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序变为:

C、B、A,则磁场必然逆时针方向旋转。

利用这一特性我们可很方便地改变三相电动机的旋转方向。

定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。

一般情况下,电动机的实际转速n1低于旋转磁场的转速n。

因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。

为此我们称三相电动机为异步电动机。

在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。

此种电动机定子做成凸极式的,有两极和四极两种。

每个磁极在1/3--1/4全极面处开有小槽,如图3所示,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。

单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。

当定子绕组通电后,在磁极中产生主磁通,根据楞次定律,其中穿过短路铜环的主磁通在铜环内产生一个在相位上滞后90度的感应电流,此电流产生的磁通在相位上也滞后于主磁通,它的作用与电容式电动机的起动绕组相当,从而产生旋转磁场使电动机转动起来。

·热继电器的工作原理

·半波能耗制动的应用

·单相和三相电动机是怎样转起来的

·变频器与电机容量匹配问题

·直流电动机知识:

分类、特点、原理、构

·EMO99展览会上的刀具展品

·关于电动机的4个常识

·三相异步电动机

(一)

·三相异步电动机的旋转原理

·电动机的绝缘等级的划分

·单相异步电动机的磁场

·农用电动机的选择与使用说明

Domain:

dnf辅助More:

d2gs2f

·三相异步电动机原理

·电机的分类

·三相异步电动机

(二)

·NDJ-79旋转粘度计工作原理简要

·自学成专家空调常见六大故障解析

·三相异步电动机:

绕组短路

·应用案例:

浅谈中型变频电机的绕组型式

·三相异步电动机结构

·烘干电动机绕组常用哪些方法?

·电动机配件绕组短路和断路故障的检查和

·三相异步电动机绕组短路怎么办

·直线电动机实现机床进给系统零传动(四

·同步电动机的原理

·无刷直流电动机工艺

·直线电动机的原理和分类

·鼠笼式三相异步电动机Y-△降压手动控

·定子三相绕组异步电动机误接成三角形接

·开关磁阻电动机调速系统在矿用设备中的

匿名

随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。

在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。

在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。

在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。

ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。

本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。

1DTC控制技术

DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。

其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。

定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。

在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。

2防止溜钩控制

作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。

溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。

电磁制动器从通电到断电(或从断电到通电)

需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。

零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。

直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3系统硬件配置

梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。

主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。

主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。

变频器配有RPBA201接口卡件,提供标准的Profibus2DP现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。

4起升变频器功能参数设置

ABB变频器在出厂时,所有功能码都已设置。

但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。

(1)起动数据(参数组99)

参数99102(用于提升类传动,但不包括主/从总线通信功能):

CRANE;参数99104(电动机控制模式):

DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):

按照电动机的铭牌参数输入。

(2)数字输入(参数组10)

参数10101~10113(数字输入接口预置参数):

按照变频器外围接口定义进行设置,限于篇幅,不再赘述。

(3)限幅(参数组20)

参数20101(运行范围的最小速度):

-1000r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):

1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):

120%;参数20104(最大正输出转矩):

150%;参数20104(最大负输出转矩):

-150%;参数20106(直流过压控制器参数):

OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。

(4)脉冲编码器(参数组50)

参数50101(脉冲编码器每转脉冲数):

1024;参数50103(编码器故障):

FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。

(5)提升机(参数组64)

参数64101(独立运行选择):

FALSE;64103(高速值1):

98%;64106(给定曲线形状):

0(直线);参数64110(控制类型选择):

FBJOYSTICK.(6)逻辑处理器(参数组65)

参数65101(电动机停止后是否保持电动机磁场选择):

TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):

5s.(7)转矩验证(参数组66)

参数66101(转矩验证选择):

TRUE(转矩验证有效,要求有脉冲编码器)。

(8)机械制动控制(参数组67)

参数67106(相对零速值):

3%;参数67109(起动转矩选择器):

AUTOTQMEM(自动转矩记忆)。

(9)给定处理器(参数组69)

参数69101(对应100%给定设置电动机速度):

980r/min(根据实际电动机参数进行设定);参数69102(正向加速时间):

3s;参数69103(反向加速时间):

3s;参数69104(正向减速时间):

3s;参数69105(反向减速时间):

3s.(10)可选模块(参数组98)

参数98101(脉冲编码器模块选择):

RTAC2SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):

FIELDBUS(激活外部串行通信并选择外部串行通信接口)。

5试运行

变频调速系统的功能参数设定完后,就可进行系统试运行。

应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。

整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。

在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。

在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。

在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。

在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。

在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。

ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。

本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。

1DTC控制技术

DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。

其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。

定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。

在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。

2防止溜钩控制

作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。

溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。

电磁制动器从通电到断电(或从断电到通电)

需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。

零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。

直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3系统硬件配置

梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。

主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。

主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。

变频器配有RPBA201接口卡件,提供标准的Profibus2DP现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。

4起升变频器功能参数设置

ABB变频器在出厂时,所有功能码都已设置。

但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。

(1)起动数据(参数组99)

参数99102(用于提升类传动,但不包括主/从总线通信功能):

CRANE;参数99104(电动机控制模式):

DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):

按照电动机的铭牌参数输入。

(2)数字输入(参数组10)

参数10101~10113(数字输入接口预置参数):

按照变频器外围接口定义进行设置,限于篇幅,不再赘述。

(3)限幅(参数组20)

参数20101(运行范围的最小速度):

-1000r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):

1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):

120%;参数20104(最大正输出转矩):

150%;参数20104(最大负输出转矩):

-150%;参数20106(直流过压控制器参数):

OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。

(4)脉冲编码器(参数组50)

参数50101(脉冲编码器每转脉冲数):

1024;参数50103(编码器故障):

FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。

(5)提升机(参数组64)

参数64101(独立运行选择):

FALSE;64103(高速值1):

98%;64106(给定曲线形状):

0(直线);参数64110(控制类型选择):

FBJOYSTICK.(6)逻辑处理器(参数组65)

参数65101(电动机停止后是否保持电动机磁场选择):

TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):

5s.(7)转矩验证(参数组66)

参数66101(转矩验证选择):

TRUE(转矩验证有效,要求有脉冲编码器)。

(8)机械制动控制(参数组67)

参数67106(相对零速值):

3%;参数67109(起动转矩选择器):

AUTOTQMEM(自动转矩记忆)。

(9)给定处理器(参数组69)

参数69101(对应100%给定设置电动机速度):

980r/min(根据实际电动机参数进行设定);参数69102(正向加速时间):

3s;参数69103(反向加速时间):

3s;参数69104(正向减速时间):

3s;参数69105(反向减速时间):

3s.(10)可选模块(参数组98)

参数98101(脉冲编码器模块选择):

RTAC2SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):

FIELDBUS(激活外部串行通信并选择外部串行通信接口)。

5试运行

变频调速系统的功能参数设定完后,就可进行系统试运行。

应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。

整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

  其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。

在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。

在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2