基于PLC的中央空调设计毕业设计论文.docx

上传人:b****2 文档编号:2752668 上传时间:2023-05-04 格式:DOCX 页数:56 大小:728.75KB
下载 相关 举报
基于PLC的中央空调设计毕业设计论文.docx_第1页
第1页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第2页
第2页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第3页
第3页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第4页
第4页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第5页
第5页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第6页
第6页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第7页
第7页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第8页
第8页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第9页
第9页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第10页
第10页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第11页
第11页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第12页
第12页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第13页
第13页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第14页
第14页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第15页
第15页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第16页
第16页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第17页
第17页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第18页
第18页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第19页
第19页 / 共56页
基于PLC的中央空调设计毕业设计论文.docx_第20页
第20页 / 共56页
亲,该文档总共56页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于PLC的中央空调设计毕业设计论文.docx

《基于PLC的中央空调设计毕业设计论文.docx》由会员分享,可在线阅读,更多相关《基于PLC的中央空调设计毕业设计论文.docx(56页珍藏版)》请在冰点文库上搜索。

基于PLC的中央空调设计毕业设计论文.docx

基于PLC的中央空调设计毕业设计论文

基于PLC的中央空调设计

摘要

中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。

由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。

通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。

关键词:

PLC变频器中央空调节能改造温度控制

ABSTRACT

  Thecentralair-conditioningsystemisoneofmodernlarge-scalebuildingessentialsupportingfacilities,theelectricalpowerconsumptionishuge,about50%ofthetotalpowerconsumptionofbuilding.Becauseallthecentralair-conditioningsystemsisdesignedbasedonitsmaximumloading.Infact,thesystemonlyhastorunabouttendayseven10hoursundertheconditionofmaximumloading.Itrunswith70%maximumloadingmostofthetime.Usuallythefrozenhostofsystemcouldadjustitsloadingautomaticallyaccordingtothechangeoftemperature.Buttherefrigerationpumpandcoolingpumpcouldn’tadjustautomaticallyandalmostrunwithmaximumloadingforalongtermandthatisawasteofenergyandalsoworsensrunningenvironmentandrunningqualityofcentralair-conditioning.

  WiththefastmaturityofFrequencyConversionTechnology,usingorganiccombinationofinverter,PLC,digitalanalogconversionmodule,temperaturesensorandtemperaturemoduletothermoelectricclosed-loopautomaticcontroltechnologywhichcanadjustoutputflowrateautomaticallytosaveenergy.

Keywords:

PLC,Inverter,Centralairconditioning,Energysavingreconstruction,Temperaturecontrol

 

第一章绪论

中央空调系统已广泛应用于工业与民用领域,在宾馆、酒店、写字楼、商场、住院部大楼、工业厂房中的中央空调系统,其制冷压缩机组、冷冻循环水系统、冷却循环水系统、冷却塔风机系统等的容量大多是按照建筑物最大制冷、制热负荷选定的,且再留有充足余量。

在没有使用具备负载随动调节特性的控制系统中,无论季节、昼夜和用户负荷的怎样变化,各电机都长期固定在工频状态下全速运行,能量的浪费是显而易见的。

近年来由于电价的不断上涨,造成中央空调系统运行费用急剧上升,致使它在整个大厦营运成本费用中占据越来越大的比例,加之目前各生产、服务业竞争激烈,多数企业利润空间不够理想。

因此电能费用的控制显然已经成为经营管理者所关注的问题所在。

随着负荷变化而自动调节变化的变流量变频空调水系统和自适应智能负荷调节的压缩机系统应运而生,并逐渐显示其巨大的优越性,而且得到越来越多的被广泛推广与应用。

随着PLC技术和变频器的发展,采用变频调速技术不仅能使空调系统发挥更加理想的工作状态,还能节省不必要的电能和水资源的浪费。

通过各个系统的出回水温度测定传送给PLC的PID,再由PID计算出温差来控制各变频器的频率,从而来调节电动机的运转速率。

在冷冻循环水体统中,冷冻泵与盘管风机的协调运行使得房间内的温度不会有太大的偏差,让室内的人有舒适感,冷的水温在冷冻泵的作用下在循环系统中流动,当流过房间时吸热温度升高,高温水流经盘管时由风机降一部分温度,随后流回蒸发器与冷凝剂换热降温,温差大电动机运转加快,加速降温。

在冷却循环水系统中,冷却泵与冷却塔风机的协调运行使得冷却水的温度很快降下来,与冷冻水换热,保证房间的适宜温度。

 

第二章工艺流程图和节能示意图

2.1中央空调系统的工艺流程

中央空调系统一般主要由制冷压缩机系统、冷媒(冷冻和冷热)循环水系统、冷却循环水系统、盘管风机系统、冷却塔风机系统等组成。

其工艺结构流程图如图1所示,在图1中制冷压缩机组通过压缩机将制冷剂(冷媒介质如r134a、r22等)压缩成液态后送蒸发器中,冷冻循环水系统通过冷冻水泵将常温水泵入蒸发器盘管中与冷媒进行间接热交换,这样原来的常温水就变成了低温冷冻水,冷冻水被送到各风机风口的冷却盘管中吸收盘管周围的空气热量,产生的低温空气由盘管风机吹送到各个房间,从而达到降温的目的。

冷媒在蒸发器中被充分压缩并伴随热量吸收过程完成后,再被送到冷凝器中去恢复常压状态,以便冷媒在冷凝器中释放热量,其释放的热量正是通过循环冷却水系统的冷却水带走。

冷却循环水系统将常温水通过冷却水泵泵入冷凝器热交换盘管后,再将这已变热的冷却水送到冷却塔上,由冷却塔对其进行自然冷却或通过冷却塔风机对其进行喷淋式强迫风冷,与大气之间进行充分热交换,使冷却水变回常温,以便再循环使用。

在冬季需要制热时,中央空调系统仅需要通过冷热水泵(在夏季称为冷冻水泵)将常温水泵入蒸汽热交换器的盘管,通过与蒸汽的充分热交换后再将热水送到各楼层的风机盘管中,即可实现向用户提供供暖热风。

图1中央空调系统工艺结构流程图

理解中央空调系统工艺流程对于节能改造的实现至关重要,从因果关系角度上看,冷冻水系统、冷却水系统、冷却塔风机系统均是主压缩机系统的从动系统。

当主压缩机系统的负荷发生变化时,对冷冻水、冷却水的需求量和冷却塔需求的冷却风量也发生相应的变化,正因如此,我们才有节能改造的必要前提条件,才有实现“按需分配”控制方案的可能。

中央空调的冷冻水和冷却水是2个独立的系统,冷冻水系统是指在机组和末端封盘之间循环的水系统,进出水温为12-7度,水温较低;冷却水系统是指在机组和室外散热设备之间循环的水系统,进出水温为37-32度,水温较高,冷却水的散热通用散热设备的有冷却塔、室外冷凝器、地下水等。

空调冷冻水是与蒸发器相连空调系统中的水,而冷却水是通过冷凝器与冷却塔相连的水系统。

通俗点说,冷冻水就是在进入建筑物室内的水,用这些水带走房间的热量到机房。

但是冷冻水是循环的,它从室内带的热量,又需要其他物质给交换带走,这个物质就是冷却水。

冷冻水/冷却水/冷凝水可以放在一起理解,水系统中主机与末端是通过冷冻水换热,主机与冷却塔经过冷却水换热,末端空气处理设备在得到冷冻水的冷热量后与室内空气换热会产生凝结水

冷冻水是只通过制冷机使其温度下降后再流向冷却工艺的循环水,主要用于中央空调和工厂中需低温冷却的系统。

就冷却系统的构成而言,冷冻水分为密闭式和非密闭式,非密闭式又分为部分敞开式和喷淋式两种类型。

中央空调冷冻水系统多为密闭式;工厂中冷冻水系统多为敞开式,如天津大沽化工厂某分厂7℃水;带有喷淋装置的冷冻水系统主要见于需进行空气洗涤和控制空气湿度的地方,如纺织厂、电子元器件制造车间等。

上述几种不同形式的冷冻水系统,有着许多共同的特点。

2.1.1冷冻水的特点

浓缩倍数基本保持不变。

密闭式冷冻水系统在循环过程中,由于不与空气接触,没有蒸发,所以水量基本上没有损失。

部分敞开式冷冻水系统仅是冷水池敞口部分暴露于空气之中,与空气之间的交换量很少,可以忽略不计,故在循环过程中几乎没有水量损失。

带有喷淋装置的冷冻水系统,夏季在循环过程中有特殊的吸湿现象,即在循环过程中没有水量损失,反而因空气中的水蒸气进入系统而使系统中的离子浓度低于补充水。

由于这种现象在某些地区引起冷冻水变化较大,也是药量损失的主要因素,应引起重视,采取相应措施。

而在冬季由于对空气起增湿作用冷冻水有一定的浓缩。

2.1.2冷却水

1、冷却水温度对冷水机组制冷量的影响

我们都知遭:

从运行费来讲,在制冷主机制冷量一定的情况下,冷凝温度越低,制冷系数越大,耗能量就越小。

据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。

但为达到此目的,需采取以下措施:

增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。

增加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽理想。

增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度还受当地气象参数的限制。

提高冷凝器冷却水侧的放热系数,是实际和有效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进行有效的处理.

2、冷却水的补水问题

冷却塔水量损失,包括三部分:

蒸发损失,风吹损失和排污损失,即:

Qm=Qe+Qw+Qb

式中:

Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb为排污水量损失。

(1)蒸发损失Qe=(0.001+0.00002θ)ΔtQ

(1)

式中:

Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ为空气的干球温度。

(2)风吹损失水量

对于有除水器的机械通风冷却塔,风吹损失量为Qw=(0.2%~0.3%)Q

(2) 

(3)排污和渗漏损失

该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关.浓缩倍数的计算公式:

N=Cr/Cm

式中:

N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量. 

根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗偏水中所带走的含盐量. 

QmCm=(Qw+Qb)Cr 

N=Cr/Cm=Qm/(Qw+Qb)=(Qe+Qw+Qb)/(Qw+Qb)(3)

Qm=QeN/(N一1) 

浓缩倍数为补充水含盐量和经浓缩后冷却水中的含盐量之比,《建筑给水排水设计手册》推荐N值,一般情况下最高不超过5~6。

N值过大,排污和渗漏损失大,必然造成水浪费,N值过小,补水量小,冷却水浓度大,会造成系统的污垢和腐蚀。

由式

(1)可以计算出蒸发水量,再由

(2)风吹损失水量,最后由式(3)计算出排污和渗漏损失水量。

3、冷却水的水质

目前,由于空调冷却系统大多数为敞开式循环系统,它效果好,造价低,在工程中得到广泛应用,但是经蒸发冷却后浓缩,水中的C,Mg,Cl,Si等离子,溶解固体,悬浮物相应增加,由于空气中和水福化接触,溶氧量增加,CO大量散失,游离的CO含量降低,碳酸钙浓度降低,制冷1_t大幅度下降.如不加强管理,空气中污染物如灰尘、杂物进人系统,会繁殖徽生物绿澡及粘泥,此时污垢和粘泥可引起垢下腐蚀,而腐蚀产品又形成污垢,最后造成设备及管道演蚀穿孔而被停机,冷却水的水指标。

目前尚无确切的资料和标准,空调冷却水对水质的要求幅度较宽,主要应从冷却水对设备腐蚀,积垢堵塞及设备清洗难易等情况考虑。

针对以上分析,冷却水在冷却塔内蒸发散热的过程中水质不断发生变化,引起积垢、腐蚀和堵塞,目前,空调冷却补水多采用自来水,对于大型的空调冷却水系统,仅靠补充少量优质自来水是不起作用的,冷却水必须进行处理。

4、循环冷却水处理

由于空调冷却水系统的结垢、腐蚀和藻类滋生不是在短期内形成的,也不会在短期内对系统有破坏性的影响,所以,往往得不到运行管理人员足够的重视。

另外由于空调冷却水系统比较简单,设计人员对其重视不够,并且,冷却水的处理是给排水专业和暖通专业均相关的专业,而冷却水系统多是由暖通专业人员搞,所以,难免造成先天设计不尽合理.在设计过程中针对空调冷却水系统易结垢腐蚀和菌藻滋生的特点,其处理方法也与冷冻水系统有所不同。

冷却水的处理方法可分为化学法和物理法。

化学法。

目前,大型冷却水系统多采用化学方法,为此必须在冷却水中加入阻垢剂、缓蚀剂、杀菌灭藻剂及其配套的清洗剂等,从而形成了冷却水的全套水处理技术。

可供设计大型空调冷却水处理的参考。

由于阻垢可保证传热效果(节能),级蚀剂、杀菌灭藻剂可减少设备腐蚀,延长设备寿命均属正效益,所以被世人所关注,国外各大水处理公司都把此技术作为第一重点来抓,据报道1987年工业水处理剂(冷却水部分)销誉值为5.86亿美元,年初1992年销售值为7.65亿美元,年增长率为6%。

近几年来,随着我国国民经济的快速发展,对水处理剂的研究和开发也有了长足的发展.

 加药处理法:

该方法较早应用于热水锅炉和船泊水处理,近几年来,该方法也被用于冷却水系统,常用的药剂多为固态晶体硅酸盐被膜缓蚀剂。

实践证明,有以下几点需要注意:

不同的被膜剂要求有不同的溶解温度,对于把加药灌设在循环水系统上的,水温往往能达到溶解温度,而对于把加药灌设在补水系统上的,应特别注意防止水温过低,如果水温过低,被膜缓蚀剂的溶解不好,就会影响缓蚀的作用。

 物理方法:

是近几年开始普遍广泛使用的一种方法,该方法运行费用低、使用方便、易于控制、无污染是一种比较理想的水处理方法,实际上国外早在60年代便把注意力由化学方法转移到物理方的开发上来。

目前,应用的物理方法有磁力法、电解法、超声法、静电法等。

电解法能抑制水垢的附着,但是除垢不彻底,且具有电解孔蚀的危险;早期应用的磁力法稳定性比较差,长时间使用不能控制积垢,必须定期清扫积聚在控制器中的氧化铁;而静电法则克服了上述诸方法的缺点,并且,除了防垢和溶垢外,还有显著的杀菌灭藻的效能。

但是静电法和电子水处理法缓蚀作用较专用的化学缓蚀略低,在一般空调冷却水系统内可不考虑采用其它缓蚀方法。

而在一些对缓蚀要求较高的系统最好同时适量添加一些缓蚀剂,可获得更好效果。

5、冷却水系统的管道布置

冷却水系统的管道布置虽然比较简单,但如果考虑不周,也会出现一些问题。

由于循环冷却水系统是开式系统,如果冷却塔集水盘容积小或冷却塔距水泵距离太远及并联运行的冷却塔出水管阻力平衡严重失调,就会使空气混入水中,进入水泵并压入管道中,引起严重的水锤致使水泵出水管及其管件损坏。

所以,冷却水系统应注意下列几个问题:

(1)   冷却塔并联使用时管道阻力平衡,冷却塔与泵的距离不能太远;泵应布置在冷水机组的前边(即将冷却水压入冷水机组中);并且,泵应作成自灌式;避免泵的吸水管上下翻弯。

另外,冷却泵、冷水机组、冷却塔宜做成一一对应,以便于调节和流量平衡,如果不能实现上述控制时,应采用自动控制系统,冷却塔的进出口处均应设电磁阀,且应同步开、关。

或在每台冷却塔的进、出水管上设置平衡阀以保证每台冷却塔的进水量满足其额定流量.为提高吸水管的集水量,设计吸水管时可适当加大吸水管的管径。

(2)   选择冷却塔时首先应注意产品样本给出的性能参数与该产品实际性能的差距。

其中包括产品样本的不实及工程建设地点的气象条件与产品标定性能的测试条件不同等因素。

要按照工程地点的气象条件进行校核。

并应根据该产品的工程应用经验采取相应的调整措施。

有时不得不采用较大的裕量系数。

(3)   冷却塔一般安装在高层建筑的裙房屋面。

因距离主楼较近,所以尚应考虑冷却塔的吸风距离、防火、噪声、漂雾等问题。

关于冷却塔的吸风距离国家规范作了详细的规定。

 

(4)选择冷却水泵时要根据冷却水系统的循环阻力,输水高差及自由水头决定,不宜富裕过多。

水泵的流量应按校核后的冷水温差决定。

多台泵并联工作时要按并联曲线进行计算和校核。

不能盲目地按台数进行水量叠加。

(5)关于冷却水系统的集水池,以往在设计冷却水设备时,其集水池的容积大多按冷却水量的10%设置(见空调制冷手册)。

这一要求在选用集水型冷却塔时已不适用.集水型冷却塔带有自身的集水箱,其容量较小,但实际证明亦能满足冷却水泵工作的需要。

目前的空调冷却水系统,由于受建筑条件的限制,多数无法设置大型、符合10%冷却水觉要求的集水他。

所以,依靠冷却塔本身的集水箱并做好水位保持及补水即可。

有关资料推荐,集水箱的容积一般为冷却水量的2%一3%,建筑条件许可增设水池,其容量也不宜过大,不需要按冷却水量的1O%设置。

只要能容纳冷却水系统的水量,能够保证冷却水泵正常起动和工作即可。

2.1.3冷却水塔

用于为冷冻机组提供“冷却水”。

2.1.4“外部热交换”系统

由两个循环水系统组成:

⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。

⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。

冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。

2.1.5冷却风机

⑴、室内风机:

安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换;

⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

2.2中央空调末端风机盘管选择时的注意事项

  我国在风机盘管检测指标中有如下一些项目:

风量、供冷量、供热量、单位风机功率供冷量、水阻力、A声级噪声、凝露、凝结水处理、电机绕组温升、热态绝缘电阻、泄漏电流、接地电阻这些指标。

但我们在工程中评价一台风机盘管质量好坏的标准主要还是看其风量、冷量、噪声、耗电量这几个指标。

平时在选择风机盘管时不少人认为盘管技术早已过关,每个厂家的产品都大同小异,因而往往只从价格考虑。

从上表我们可看出不同厂家的产品在冷量、耗电量、噪声方面确有不少差异。

但仅从耗电量来讲,同款产品最大耗电量与最小耗电量之间相差23W,如果以某办公室盘管每天运行10小时,每年运行200天计算(年使用系数取0.6),每年可节约27.6度电,以每度电1.1元计算年节约运行费用30元。

如果两者的价格相差百元,那增加的初投资将在三年多的时间中得以收回。

这仅仅是经济帐不包括低噪声盘管对提高工作效率以及工作人员身心健康所带来的好处。

下面将谈谈具体选型时应注意的几点。

1、盘管冷量不足:

这个问题是目前用户投诉最多的一个问题。

造成这种问题的主要原因是不少企业没有自己的测试手段,样本上的参数从其它厂家的样本上抄袭的,且自己生产的盘管热工性能又较差(这主要是由翅片形式、胀管质量、生产工艺等造成)。

因此建议在进行项目考察时应注意该厂家的测试设施与手段,很难想象一个没有自己测试装置的厂家能产生出好产品来。

2、风量:

目前我们在进行具体工程设计中往往是根据计算所得冷负荷通过查阅有关厂家的样本来选择风机盘管。

如何考虑盘管的风量是一个问题。

国内市场上多数厂家的盘管都只有一种三排管的,但也有厂家提供二排管的盘管。

笔者认为对于大多数民用建筑空调系统而言选择二排管的盘管更为有利(对高湿度场合例外)。

这是因为二排管的产品在同样冷量下风量较大,这将增大空调房间的换气次数,有利于提高空调精度及舒适性。

同样冷量下,采用小温差、大风量送风,会取得比大温差、小风量送风更佳的空调效果。

3、机外余压:

由于我国目前的盘管国家标准规定风机盘管的风量、冷量及噪声等参数的测试均是在机外静压为O的条件下进行的。

但在实际使用中盘管出风口前往往要接一小段风管及出风百叶,另外有的工程中还设有回风箱,因此在实际使用中会发现盘管的实际风量要小于其名义风量,这样的后果就是房间风量减小,送风温差增大,空调的舒适性下降。

有的设计人员为避免这种情况就在选型时按盘管的中档风量选取,以避免风量不足,但却增大工程的初投资。

因而笔者建议在国内测试标准尚未改变的情况下,我们在盘管选型时应该优先选择有余压(一般应为10~15Pa)的机组。

4、噪声问题:

这是目前国内产品与国外产品差距较大的一个地方,也是目前盘管因质量问题而被投诉的一个要点。

造成这一问题的原因多在于盘管中的电机与风机配置及匹配的不合理。

另一个原因是厂家质量管理不严,装配工责任心不强,造成产品质量不稳定。

所以我们在考察一个厂家产品时应查阅其由国家权威质检部门出具的该款产品(注意一定要是我们准备订货的那几款产品)噪声检测报告。

对于选用批量较大的工程项目应现场抽样送有关质检部门检测。

除了以上讲的几条外,在盘管选型时还应注意其是否有质检部门出具的凝露试验合格报告。

其凝结水盘保温应采用整体保温,水盘应优先选择长盘。

此外在同等条件下应优先考虑外型小重量轻的产品。

关于电器方面的参数目前国内绝大多数厂家的产品均可达标,可不做为考察的重点。

 

第三章中央空调系统的节能原理

3.1中央空调系统的分类

中央空调系统按负载类型可分为两大类,①变转矩负载:

如冷却水系统、冷冻水系统、冷却塔风机系统等风机、水泵类负载;②恒转矩负载:

如主制冷压缩机系统。

不同的转矩类型具有完全不同的转矩功率关系特性,我们知道风机、水泵类变转矩负载特性满足流体动力学关系理论,即以下数学关系成立:

n1/n2∝q1/q2h1/h2∝(n1/n2)2p1/p2∝(n1/n2)3

(1)

其中,n、q、h、p分别表示转速、流量、扬程、轴功率。

它们之间的关系曲线如图2所示。

图2流量、扬程、功率三者间的关系曲线图

由式1可知,若转速下降到额定转速的70%,那么,扬程将下降到额定值的50%,同时,轴输出功率下降到额定值的35%。

从图2中可以看出,管网的阻尼随扬程的降低而减小。

在满足系统基本扬程需求的情形下,若系统的流量需求减少到额定流量的50%时,在变频控制方式下,其对应输出功率仅约为额定功率的13%。

这就为实施变频节能技术改造提供了数学理论上的可行性保障空间。

3.2节能的方案

改造方案主要有:

方案一是通过关小水阀门来控制流量,经测试达不到节能效果。

且控制不好会引起冷冻水未端压力偏低,造成高层用户温度过高,也常引起冷却水流量偏小,造成冷却水散热不够,温度偏高;方案二是根据制冷主机负载较轻时实行间歇停机,但再次起动主机时,主机负荷较大,实际上并不省电,且易造成空调时冷时热,令人产生不适感;方案三是采用变频器调速,由人工根据负荷轻重调整变频器的频率,这种方法人为因素较大,虽然投资较小,但达不到最大节能效果;方案四是通过变频器、PLC、数模转换模块、温度模块和温度传感器等构成温差闭环自动控

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2