PID控制器设计.docx

上传人:b****2 文档编号:2823110 上传时间:2023-05-04 格式:DOCX 页数:13 大小:181.01KB
下载 相关 举报
PID控制器设计.docx_第1页
第1页 / 共13页
PID控制器设计.docx_第2页
第2页 / 共13页
PID控制器设计.docx_第3页
第3页 / 共13页
PID控制器设计.docx_第4页
第4页 / 共13页
PID控制器设计.docx_第5页
第5页 / 共13页
PID控制器设计.docx_第6页
第6页 / 共13页
PID控制器设计.docx_第7页
第7页 / 共13页
PID控制器设计.docx_第8页
第8页 / 共13页
PID控制器设计.docx_第9页
第9页 / 共13页
PID控制器设计.docx_第10页
第10页 / 共13页
PID控制器设计.docx_第11页
第11页 / 共13页
PID控制器设计.docx_第12页
第12页 / 共13页
PID控制器设计.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

PID控制器设计.docx

《PID控制器设计.docx》由会员分享,可在线阅读,更多相关《PID控制器设计.docx(13页珍藏版)》请在冰点文库上搜索。

PID控制器设计.docx

PID控制器设计

基于MATLAB的PID控制器设计

一.PID控制简介

PID控制是最早发展起来的经典控制策略,是用于过程控制最有效的策略之一。

由于其原理简单、技术成,在实际应用中较易于整定,在工业控制中得到了广泛的应用。

它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数,经过经验进行调节器参数在线整定,即可取得满意的结果,具有很大的适应性和灵活性。

PID调节器是一种线性调节器,它根据给定值

与实际输出值

构成的控制偏差:

=

将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID调节器。

在实际应用中,常根据对象的特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。

例如,P调节器,PI调节器,PID调节器等。

综上我选择PID调节:

比例调节反应速度快,输出与输入同步,没有时间滞后,其动态特性好,但是比例调节的结果不能使被调参数完全回到给定值,而产生余差。

比例调节的结果不能使被调参数完全回到给定值,而产生余差。

在实际应用中为了达到更高的要求,常根据对象的特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。

所以我选择PID调节。

PID是以它的三种纠正算法而命名的。

这三种算法都是用加法调整被控制的数值。

而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。

这三种算法是:

比例-来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。

P只是在控制器的输出和系统的误差成比例的时候成立。

这种控制器输出的变化与输入控制器的偏差成比例关系。

比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。

那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。

积分-来控制过去,误差值是过去一段时间的误差和,然后乘以一个负常数I,然后和预定值相加。

I从过去的平均误差值来找到系统的输出结果和预定值的平均误差。

一个简单的比例系统会振荡,会在预定值的附近来回变化,因为系统无法消除多余的纠正。

通过加上一个负的平均误差比例值,平均的系统误差值就会总是减少。

所以,最终这个PID回路系统会在预定值定下来。

微分-可提高系统的响应速度,但其对高频干扰特别敏感,甚至会导致系统失稳。

所以,正确计算控制器的参数,有效合理地实现PID控制器的设计,对于PID控制器在过程控制中的广泛应用具有重要的理论和现实意义。

在PID控制系统中,PID控制器分别对误差信号e(t)进行比例、积分与微分运算,其结果的加权和构成系统的控制信号u(t),送给对象模型加以控制。

PID控制器的数学描述为

其传递函数可表示为:

从根本上讲,设计PID控制器也就是确定其比例系数Kp、积分系数Ti和微分系数Td,这三个系数取值的不同,决定了比例、积分和微分作用的强弱。

控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下,适当选择控制器的参数使控制仪表的特性和控制对象的特性相配合,从而使控制系统的运行达到最佳状态,取得最好的控制效果。

二、原理分析与说明

(1)PID控制原理与程序流程

过程控制―对生产过程的某一或某些物理参数进行的自动控制

1.模拟控制系统

基本模拟反馈控制回路

被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。

控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。

2、微机过程控制系统

微机过程控制系统基本框图

以微型计算机作为控制器。

控制规律的实现,是通过软件来完成的。

改变控制规律,只要改变相应的程序即可。

(2)数字PID控制器

1、模拟PID控制规律的离散化

模拟形式

离散化形式

2、数字PID控制器的差分方程

式中

称为比例项

称为积分项

称为微分项

(3)采样周期的选择

1、选择采样周期的重要性

采样周期越小,数字模拟越精确,控制效果越接近连续控制。

对大多数算法,缩短采样周期可使控制回路性能改善,但采样周期缩短时,频繁的采样必然会占用较多的计算工作时间,同时也会增加计算机的计算负担,而对有些变化缓慢的受控对象无需很高的采样频率即可满意地进行跟踪,过多的采样反而没有多少实际意义。

2、选择采样周期的原则――采样定理

最大采样周期

式中

为信号频率组分中最高频率分量。

(4)、选择采样周期应综合考虑的因素

1、给定值的变化频率

加到被控对象上的给定值变化频率越高,采样频率应越高,以使给定值的改变通过采样迅速得到反映,而不致在随动控制中产生大的时延。

2、被控对象的特性

1)考虑对象变化的缓急,若对象是慢速的热工或化工对象时,T一般取得较大。

在对象变化较快的场合,T应取得较小。

2)从系统抗干扰的性能要求来看,要求采样周期短,使扰动能迅速得到校正。

3、使用的算式和执行机构的类型

1)采样周期太小,会使积分作用、微分作用不明显。

同时,因受微机计算精度的影响,当采样周期小到一定程度时,前后两次采样的差别反映不出来,使调节作用因此而减弱。

2)执行机构的动作惯性大,采样周期的选择要与之适应,否则执行机构来不及反应数字控制器输出值的变化。

4、控制的回路数

要求控制的回路较多时,相应的采样周期越长,以使每个回路的调节算法都有足够的时间来完成。

控制的回路数n与采样周期T有如下关系:

式中,Tj是第j个回路控制程序的执行时间。

三、传递函数

1、传递函数

2、传递函数性能分析

(1)稳定性分析

>>num=[8];

den=[2152710];

G=tf(num,den)

Transferfunction:

8

--------------------------

2s^3+15s^2+27s+10

>>pzmap(G)

(2)未接入PID的阶跃响应曲线

四、在MATLAB下实现PID控制器的设计与仿真

1、参数计算

(1)>>num=[8];

>>den=conv([15],conv([12],[21]));

>>G=tf(num,den);

>>step(G,15);

>>step(G,100);

>>step(G,50);

k=dcgain(num,den)

k=

0.8000

由图可知,取L=0.614T=3.186。

于读图存在误差,因此参数仍需整定。

2、设计PID控制器

(1)已知对象的K、L和T值后,根据Ziegler—Nichols整定公式编写一

个MATLAB函数ziegler_std()用以设计PID控制器。

>>function[num,den,Kp,Ti,Td,H]=Ziegler_std(key,vars)

Ti=[];Td=[];H=[];

K=vars

(1);

L=vars

(2);

T=vars(3);

a=K*L/T;

ifkey==1

num=1/a;%判断设计P控制器

elseifkey==2

Kp=0.9/a;Ti=3.33*L;%判断设计PI控制器

elseifkey==3,

Kp=1.2/a;Ti=2*L;Td=L/2;%判断设计PID控制器

end

switchkey

case1

num=Kp;den=1;%P控制器

case2

num=Kp*[Ti,1];den=[Ti,0];%PI控制器

case3%PID控制器

p0=[Ti*Td,0,0];

p1=[0,Ti,1];p2=[0,0,1];

p3=p0+p1+p2;

p4=Kp*p3;

num=p4/Ti;

den=[1,0];

end

K=0.8000;L=0.614;T=3.168;[num,den,Kp,Ti,Td]=Ziegler_std(3,[K,L,T])

num=

2.38957.783412.6765

den=

10

Kp=

7.7834

Ti=

1.2280

Td=

0.3070

(2)动态仿真集成环境Simulink下构造系统模型

由图可以看出,经过调节参数之后超调量明显减小,响应曲线平滑,调节时间理想,较符合设计要求。

五、结论

利用经典PID控制法对锅炉水位进行控制,通过多次对

p三个参数的调节,有效地改善了系统的动态性能,达到了控制目的。

利用MATLAB实现PID控制器的离线设计和整定,并可实现实验室仿真。

摆脱了实际试验条件的限制,但是这种常规的PID控制不具有自适应性,在长期工作时对象参数会产生偏移,并且根据实际系统的不同,参数也应作出相应的调整,最终达到设计的目的。

六、心得体会

三周的实习结束了,我们学到了很多,总体来说这次的课程设计总的来说并不是特别容易,虽然我们在课堂上学到了不少有用的知识,可真正实践起来就发现自己缺少的太少。

我到图书馆来找过资料,也上网差了不少资料,在查找和阅读的过程中真的学到不少的知识。

当然,在做作业的时候我遇到了不少问题,在和周围同学的探讨中我们找到了答案,大家共同进步。

通过课程设计让我们更加深刻的体会到实践的重要性,平时我们多是学习理论知识,上机实践的机会少,自己也少练习,在实践方面确实欠缺不少,需要我们今后加强练习。

通过这次实习,我知道了任何事都要靠自己,只有自己的知识才是真正的知识,这让我在以后的工作生活中有了更好的动力!

感谢老师的耐心指导和悉心教导!

七、参考资料

【1】胡寿松《自动控制原理》科学出版社

【2】赵雅兴主编《电子线路PSPICE分析与设计》天津大学出版社

【3】薛定宇《基于MATLAB/Simulink系统仿真技术与应用》清华大学出版社

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2