混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx

上传人:b****1 文档编号:2959872 上传时间:2023-05-05 格式:DOCX 页数:28 大小:115.92KB
下载 相关 举报
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第1页
第1页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第2页
第2页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第3页
第3页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第4页
第4页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第5页
第5页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第6页
第6页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第7页
第7页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第8页
第8页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第9页
第9页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第10页
第10页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第11页
第11页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第12页
第12页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第13页
第13页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第14页
第14页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第15页
第15页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第16页
第16页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第17页
第17页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第18页
第18页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第19页
第19页 / 共28页
混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx

《混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx》由会员分享,可在线阅读,更多相关《混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx(28页珍藏版)》请在冰点文库上搜索。

混沌摆制作方法 《钢铁侠2》中小辣椒桌上的永动摆设.docx

混沌摆制作方法《钢铁侠2》中小辣椒桌上的永动摆设

混沌摆

目录

1混沌摆的原理是什么1

2 摩擦力1

3黄金分割2

4重力22

5磁铁22

6制作方法35

7 永动机36

1混沌摆的原理是什么

混沌摆是一个不平衡系统,不存在平衡的状态,所以会不断的翻滚。

一个运动体系,运动状态由起动时的初始条件(主、副摆的初始位置和起动速度)所决定。

单摆的运动很容易预测,由于这个大摆有小摆与之相连,它的运动就更为复杂。

其中每个摆都会影响其它摆的运动,因而使整个运动混沌无序,无法预测。

2 摩擦力

摩擦力,只要两个物体有相对运动,就会有摩擦力或者叫阻力,而且摩擦力是保守力,保守力做功和路径有关,就是说,只要有运动,那么摩擦力就会做功,就会释放热能,就会消耗掉能量,而如果没有外加的补充能量的话,整个系统的能量是会不停的减少的,所以这个设备终究会停下来。

 3黄金分割

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。

0.618被公认为最具有审美意义的比例数字。

上述比例是最能引起人的美感的比例,因此被称为黄金分割。

关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。

他发现铁匠打铁节奏很有规律,这个声音的比列被毕达哥拉斯用数理的方式表达出来。

被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。

在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在。

只是不知这个谜底。

  

  

介绍

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是(√5-1)/2,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:

1/0.618=1.618

(1-0.618)/0.618=0.618

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

  

  

作黄金分割点的一种方法

让我们首先从一个数列开始,它的前面两个数是:

1、1,后面的每个数都是它前面的两个数之和。

例如:

1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。

斐波那契数列与黄金分割

  

  

作黄金分割点的一种方法

斐波那契数列与黄金分割有什么关系呢?

经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n)/f(n+1)-→0.618…。

由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

一个很能说明问题的例子是五角星/正五边形。

五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?

因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。

黄金分割三角形(正三角形)

正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18。

黄金分割点约等于0.618:

1

是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。

线段上有两个这样的点。

利用线段上的两个黄金分割点,可以作出正五角星,正五边形等。

黄金分割的历史(欧洲部分)

2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。

所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比。

而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的。

黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。

这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。

黄金分割的历史(亚洲部分)

其实有关“黄金分割”,我国也有记载。

虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。

经考证。

欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。

黄金分割与造型艺术

它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。

在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。

正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。

黄金分割周边

黄金分割〔GoldenSection〕是一种数学上的比例关系。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。

应用时一般取0.618,就像圆周率在应用时取3.14一样。

黄金矩形(GoldenRectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍。

黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。

在很多艺术品以及大自然中都能找到它。

希腊雅典的巴特农神庙就是一个很好的例子,达·芬奇的《维特鲁威人》符合黄金矩形。

《蒙娜丽莎》的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局。

发现历史

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。

德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。

黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。

最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

黄金分割奇妙之处,在于其比例与其倒数是一样的。

例如:

1.618的倒数是0.618,而1.618:

1与1:

0.618是一样的。

确切值为(√5-1)/2

黄金分割数是无限不循环小数,前面的2000位为:

0.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635443338908659593958290563832266131992829026788067520876689250171169620703222104321626954862629631361443814975870122034080588795445474924618569536486444924104432077134494704956584678850987433944221254487706647809158846074998871240076521705751797883416625624940758906970400028121042762177111777805315317141011704666599146697987317613560067087480710131795236894275219484353056783002287856997829778347845878228911097625003026961561700250464338243776486102838312683303724292675263116533924731671112115881863851331620384005222165791286675294654906811317159934323597349498509040947621322298101726107059611645629909816290555208524790352406020172799747175342777592778625619432082750513121815628551222480939471234145170223735805772786160086883829523045926478780178899219902707769038953219681986151437803149974110692608867429622675756052317277752035361393621076738937645560606059216589466759551900400555908950229530942312482355212212415444006470340565734797663972394949946584578873039623090375033993856210242369025138680414577995698122445747178034173126453220416397232134044449487302315417676893752103068737880344170093954409627955898678723209512426893557309704509595684401755519881921802064052905518934947592600734852282101088194644544222318891319294689622002301443770269923007803085261180754519288770502109684249362713592518760777884665836150238913493333122310533923213624319263728910670503399282265263556209029798642472759772565508615487543574826471814145127000602389016207773224499435308899909501680328112194320481964387675863314798571911397815397807476150772211750826945863932045652098969855567814106968372884058746103378105444390943683583581381131168993855576975484149144534150912954070050194775486163075422641729394680367319805861833918328599130396072014455950449779212076124785645916160837059498786006970189409886400764436170933417270919143365013715

有趣的是,这个数字在自然界和人们生活中到处可见:

人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。

大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:

0.618……的两条半径的夹角。

据研究发现,这种角度对植物通风和采光效果最佳。

建筑艺术中的应用

黄金分割被认为是建筑和艺术中最理想的比例。

建筑师们对数字0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。

还有,在古希腊神庙的设计中就用到了黄金分割。

人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。

艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

数学上的应用

数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:

十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。

优选法是一种求最优化问题的方法。

如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。

通常是取区间的中点(即1500克)作试验。

然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。

这种实验法称为对分法。

但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。

这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。

实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。

因此大画家达·芬奇把0.618…称为黄金数。

0.618与战争

0.618与战略战役

0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。

古往今来,这个数字一直被后人奉为科学和美学的金科玉律。

在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。

也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?

0.618与武器装备

在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。

当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。

到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。

实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。

在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。

在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。

0.618与战术布阵

在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。

春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。

厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。

其主要攻击点的选择,恰在黄金分割点上。

把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。

数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。

或许还有别的更为重要的原因?

仔细研究之下,果然又从中发现了黄金分割律的伟大作用。

蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:

3,这又是一个黄金分割!

你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。

马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。

在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。

巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。

这一战争的深刻影响直到今天仍清晰可见,在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。

两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。

正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。

让我们以海湾战争为例。

战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。

为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。

也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。

在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。

其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。

此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。

在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。

防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。

拿破仑大帝败于黄金分割线?

0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。

一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。

1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。

这时的他可是踌躇满志、不可一世。

他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。

后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。

三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。

1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。

在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。

被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。

证明方法

设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b

  AC/AB=BC/AC

  b^2=a×(a-b)

  b^2=a^2-ab

  a^2-ab+(1/4)b^2=(5/4)×b^2

  (a-b/2)^2=(5/4)b^2

  a-b/2=(√5/2)×b

  a-b/2=(√5)b/2

  a=b/2+(√5)b/2

  a/b=(√5+1)/2

  ∴b/a=2/(√5+1)

  b/a=2(√5-1)/(√5+1)(√5-1)

  b/a=2(√5-1)/4

  b/a=(√5-1)/2

线段的黄金分割(尺规作图)

  1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2;

  2.连结AC;

  3.以C为圆心,CB为半径作弧,交AC于D;

  4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。

  

  

  

事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形(不是那个正方形)仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。

古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。

建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目

令人惊讶的是,人体自身也和0.618密切相关,对人体解剖很有研究的意大利画家达·芬奇发现,人的肚脐位于身长的0.618处;咽喉位于肚脐与头顶长度的0.618处;肘关节位于肩关节与指头长度的0.618处,人体存在着肚脐、咽喉、膝盖、肘关节四个黄金分割点,它们也是人赖以生存的四处要害。

黄金分割与人的关系

人体美学中的黄金分割

黄金分割与人的关系相当密切。

地球表面的纬度范围是0—90°,对其进行黄金分割,则34.38°—55.62°正是地球的黄金地带。

无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。

说来也巧,这一地区几乎囊括了世界上所有的发达国家。

人体美学观察受到种族、社会、个人各方面因素的影响,牵涉到形体与精神、局部与整体的辩证统一,只有整体的和谐、比例协调,才能称得上一种完整的美。

本文主要讨论美学观察的一些定律。

黄金分割律

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2