椭圆曲线密码简明教程1Word文档下载推荐.docx

上传人:b****2 文档编号:2988951 上传时间:2023-05-01 格式:DOCX 页数:28 大小:46.96KB
下载 相关 举报
椭圆曲线密码简明教程1Word文档下载推荐.docx_第1页
第1页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第2页
第2页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第3页
第3页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第4页
第4页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第5页
第5页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第6页
第6页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第7页
第7页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第8页
第8页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第9页
第9页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第10页
第10页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第11页
第11页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第12页
第12页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第13页
第13页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第14页
第14页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第15页
第15页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第16页
第16页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第17页
第17页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第18页
第18页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第19页
第19页 / 共28页
椭圆曲线密码简明教程1Word文档下载推荐.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

椭圆曲线密码简明教程1Word文档下载推荐.docx

《椭圆曲线密码简明教程1Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《椭圆曲线密码简明教程1Word文档下载推荐.docx(28页珍藏版)》请在冰点文库上搜索。

椭圆曲线密码简明教程1Word文档下载推荐.docx

2.2EllipticCurveAddition:

AnAlgebraicApproach

2.2.1AddingdistinctpointsPandQ

2.2.2DoublingthepointP

2.3Experiment:

AnEllipticCurveModel(realnumbers)

2.4Quiz1Ellipticcurvegroupsoverrealnumbers

3.0EllipticCurveGroupsOverFp

3.1AnExampleofanEllipticCurveGroupoverFp

3.2ArithmeticinanEllipticCurveGroupoverFp

3.2.1AddingdistinctpointsPandQ

3.2.2DoublingthepointP

3.3Experiment:

AnEllipticCurveModel(overFp)

3.4Quiz2EllipticcurvegroupsoverFp

4.0EllipticCurveGroupsOverF2m

4.1AnExampleofanEllipticCurveGroupoverF2m

4.2ArithmeticinanEllipticCurveGroupoverF2m

4.2.1AddingthedistinctpointsPandQ

4.2.2DoublingthepointP

4.3Experiment:

AnEllipticCurveModel(overF2m)

4.4Quiz3EllipticcurvegroupsoverF2m

5.0ECGroupsandtheDiscreteLogProblem

5.1ScalarMultiplication

5.2TheEllipticCurveDiscreteLogarithmProblem

5.3AnExampleoftheEllipticCurveDiscreteLogarithmProblem

5.3.1AnECDLPSolution

WelcometotheEllipticCurveCryptosystemClassroom.ThissiteprovidesanintuitiveintroductiontoEllipticCurvesandhowtheyareusedtocreateasecureandpowerfulcryptosystem.Thefirstthreesectionsintroduceandexplainthepropertiesofellipticcurves.Abackgroundunderstandingofabstractalgebraisrequired,muchofwhichcanbefoundintheBackgroundAlgebrasection.ThenextsectiondescribesthefactorthatmakesellipticcurvegroupssuitableforacryptosystemthoughtheintroductionoftheEllipticCurveDiscreteLogarithmProblem(ECDLP).ThelastsectionbringsthetheorytogetherandexplainshowellipticcurvesandtheECDLPareappliedinanencryptionscheme.ThisclassroomrequiresaJAVAenabledbrowserfortheinteractiveellipticcurveexperimentsandanimatedexamples.

Ellipticcurvesasalgebraic/geometricentitieshavebeenstudiedextensivelyforthepast150years,andfromthesestudieshasemergedarichanddeeptheory.Ellipticcurvesystemsasappliedtocryptographywerefirstproposedin1985independentlybyNealKoblitzfromtheUniversityofWashington,andVictorMiller,whowasthenatIBM,YorktownHeights.

Manycryptosystemsoftenrequiretheuseofalgebraicgroups.Ellipticcurvesmaybeusedtoformellipticcurvegroups.Agroupisasetofelementswithcustom-definedarithmeticoperationsonthoseelements.Forellipticcurvegroups,thesespecificoperationsaredefinedgeometrically.Byintroducingmorestringentpropertiestotheelementsofagroup,suchaslimitingthenumberofpointsonsuchacurve,createsanunderlyingfieldforanellipticcurvegroup.Inthisclassroom,ellipticcurvesarefirstexaminedoverrealnumbersinordertoillustratethegeometricalpropertiesofellipticcurvegroups.Thereafter,ellipticcurvesgroupsareexaminedwiththeunderlyingfieldsofFp(wherepisaprime)andF2m(abinaryrepresentationwith2melements).

2.0EllipticCurveGroupsoverRealNumbers

Anellipticcurveoverrealnumbersmaybedefinedasthesetofpoints(x,y)whichsatisfyanellipticcurveequationoftheform:

y2=x3+ax+b,wherex,y,aandbarerealnumbers.

Eachchoiceofthenumbersaandbyieldsadifferentellipticcurve.Forexample,a=-4andb=0.67givestheellipticcurvewithequationy2=x3-4x+0.67;

thegraphofthiscurveisshownbelow:

Ifx3+ax+bcontainsnorepeatedfactors,orequivalentlyif4a3+27b2isnot0,thentheellipticcurvey2=x3+ax+b

canbeusedtoformagroup.Anellipticcurvegroupoverrealnumbersconsistsofthepointsonthecorrespondingellipticcurve,togetherwithaspecialpointOcalledthepointatinfinity.

P+Q=Ristheadditivepropertydefinedgeometrically.

Ellipticcurvegroupsareadditivegroups;

thatis,theirbasicfunctionisaddition.Theadditionoftwopointsinanellipticcurveisdefinedgeometrically.

ThenegativeofapointP=(xP,yP)isitsreflectioninthex-axis:

thepoint-Pis(xP,-yP).NoticethatforeachpointPonanellipticcurve,thepoint-Pisalsoonthecurve.

2.1.1

AddingdistinctpointsPandQ

SupposethatPandQaretwodistinctpointsonanellipticcurve,andthePisnot-Q.ToaddthepointsPandQ,alineisdrawnthroughthetwopoints.Thislinewillintersecttheellipticcurveinexactlyonemorepoint,call-R.Thepoint-Risreflectedinthex-axistothepointR.ThelawforadditioninanellipticcurvegroupisP+Q=R.Forexample:

ThelinethroughPand-Pisaverticallinewhichdoesnotintersecttheellipticcurveatathirdpoint;

thusthepointsPand-Pcannotbeaddedaspreviously.ItisforthisreasonthattheellipticcurvegroupincludesthepointatinfinityO.Bydefinition,P+(-P)=O.Asaresultofthisequation,P+O=Pintheellipticcurvegroup.Oiscalledtheadditiveidentityoftheellipticcurvegroup;

allellipticcurveshaveanadditiveidentity.

ToaddapointPtoitself,atangentlinetothecurveisdrawnatthepointP.IfyPisnot0,thenthetangentlineintersectstheellipticcurveatexactlyoneotherpoint,-R.-Risreflectedinthex-axistoR.ThisoperationiscalleddoublingthepointP;

thelawfordoublingapointonanellipticcurvegroupisdefinedby:

P+P=2P=R.

ThetangentfromPisalwaysverticalifyP=0.

2.1.4DoublingthepointPifyP=0

IfapointPissuchthatyP=0,thenthetangentlinetotheellipticcurveatPisverticalanddoesnotintersecttheellipticcurveatanyotherpoint.

Bydefinition,2P=OforsuchapointP.

Ifonewantedtofind3Pinthissituation,onecanadd2P+P.ThisbecomesP+O=PThus3P=P.

3P=P,4P=O,5P=P,6P=O,7P=P,etc.

Althoughthepreviousgeometricdescriptionsofellipticcurvesprovidesanexcellentmethodofillustratingellipticcurvearithmetic,itisnotapracticalwaytoimplementarithmeticcomputations.Algebraicformulaeareconstructedtoefficientlycomputethegeometricarithmetic.

WhenP=(xP,yP)andQ=(xQ,yQ)arenotnegativeofeachother,

P+Q=Rwhere

s=(yP-yQ)/(xP-xQ)

xR=s2-xP-xQandyR=-yP+s(xP-xR)

NotethatsistheslopeofthelinethroughPandQ.

2.2.2DoublingthepointP

WhenyPisnot0,

2P=Rwhere

s=(3xP2+a)/(2yP)

xR=s2-2xPandyR=-yP+s(xP-xR)

RecallthataisoneoftheparameterschosenwiththeellipticcurveandthatsisthetangentonthepointP.

AnEllipticCurveModeloverRealNumbers

Thefollowingmodelcanbeusedtoexperimentwithadditioninavarietyofellipticcurvegroups.

GeometricEllipticCurveModel.(Ajavascriptappletthatopensinaseparatewindow)

Trythefollowingexperiments:

1.Changethevariablesaandbtoseetheresultingshapeandtheellipticcurve.

2.SelectapointPonthecurve,andthenselectapointQonthecurve.Addthemtogether.

3.SelectapointPonthecurveandthendoubleit.

4.Tryselectinga=-3andb=2

2.4QUIZ1

EllipticCurveGroupsoverrealnumbers

1.Doestheellipticcurveequationy2=x3-7x-6overrealnumbersdefineagroup?

2.Whatistheadditiveidentityofregularintegers?

3.Is(4,7)apointontheellipticcurvey2=x3-5x+5overrealnumbers?

4.Whatarethenegativesofthefollowingellipticcurvepointsoverrealnumbers?

P(-4,-6),Q(17,0),R(3,9),S(0,-4)

5.Intheellipticcurvegroupdefinedbyy2=x3-17x+16overrealnumbers,whatisP+QifP=(0,-4)andQ=(1,0)?

6.Intheellipticcurvegroupdefinedbyy2=x3-17x+16overrealnumbers,whatis2PifP=(4,3.464)?

(解见后)Clickhereforsolutions

Anessentialpropertyforcryptographyisthatagrouphasafinitenumberofpoints.

3.0EllipticCurveGroupsoverFp

Calculationsovertherealnumbersareslowandinaccurateduetoround-offerror.Cryptographicapplicationsrequirefastandprecisearithmetic;

thusellipticcurvegroupsoverthefinitefieldsofFpandF2mareusedinpractice.

RecallthatthefieldFpusesthenumbersfrom0top-1,andcomputationsendbytakingtheremainderondivisionbyp.Forexample,inF23thefieldiscomposedofintegersfrom0to22,andanyoperationwithinthisfieldwillresultinanintegeralsobetween0and22.

AnellipticcurvewiththeunderlyingfieldofFpcanformedbychoosingthevariablesaandbwithinthefieldofFp.Theellipticcurveincludesallpoints(x,y)whichsatisfytheellipticcurveequationmodulop(wherexandyarenumbersinFp).

Forexample:

y2modp=x3+ax+bmodphasanunderlyingfieldofFpifaandbareinFp.

Ifx3+ax+bcontainsnorepeatingfactors(or,equivalently,if4a3+27b2modpisnot0),thentheellipticcurvecanbeusedtoformagroup.AnellipticcurvegroupoverFpconsistsofthepointsonthecorrespondingellipticcurve,togetherwithaspecialpointOcalledthepointatinfinity.Therearefinitelymanypointsonsuchanellipticcurve.

NotetheseeminglyrandomspreadofpointsfortheellipticcurveoverFp.

3.1ExampleofanEllipticCurveGroupoverFp

Asaverysmallexample,consideranellipticcurveoverthefieldF23.Witha=1andb=0,theelli

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2