锁相环基本原理Word下载.docx

上传人:b****2 文档编号:3020664 上传时间:2023-05-01 格式:DOCX 页数:35 大小:940.55KB
下载 相关 举报
锁相环基本原理Word下载.docx_第1页
第1页 / 共35页
锁相环基本原理Word下载.docx_第2页
第2页 / 共35页
锁相环基本原理Word下载.docx_第3页
第3页 / 共35页
锁相环基本原理Word下载.docx_第4页
第4页 / 共35页
锁相环基本原理Word下载.docx_第5页
第5页 / 共35页
锁相环基本原理Word下载.docx_第6页
第6页 / 共35页
锁相环基本原理Word下载.docx_第7页
第7页 / 共35页
锁相环基本原理Word下载.docx_第8页
第8页 / 共35页
锁相环基本原理Word下载.docx_第9页
第9页 / 共35页
锁相环基本原理Word下载.docx_第10页
第10页 / 共35页
锁相环基本原理Word下载.docx_第11页
第11页 / 共35页
锁相环基本原理Word下载.docx_第12页
第12页 / 共35页
锁相环基本原理Word下载.docx_第13页
第13页 / 共35页
锁相环基本原理Word下载.docx_第14页
第14页 / 共35页
锁相环基本原理Word下载.docx_第15页
第15页 / 共35页
锁相环基本原理Word下载.docx_第16页
第16页 / 共35页
锁相环基本原理Word下载.docx_第17页
第17页 / 共35页
锁相环基本原理Word下载.docx_第18页
第18页 / 共35页
锁相环基本原理Word下载.docx_第19页
第19页 / 共35页
锁相环基本原理Word下载.docx_第20页
第20页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

锁相环基本原理Word下载.docx

《锁相环基本原理Word下载.docx》由会员分享,可在线阅读,更多相关《锁相环基本原理Word下载.docx(35页珍藏版)》请在冰点文库上搜索。

锁相环基本原理Word下载.docx

n2(2n-)S

H(S)=

k_

S22nS

n

 

-(

K=KdKo

同样可得:

s2

He(S)=S22nSJ

3n称为系统的固有频率或自然角频率;

称为系统的阻尼系数。

要注意的是上面讨论中的3指的是输入信号相位的变化角频率,而不是输入信号本身的角频率。

如输入信号是调频信号,则3指的是调制信号的角频率而不是载波的角频率。

五.锁相环的同步与捕捉

锁相环的输出频率(或VCO的频率)3o能跟踪输入频率3i的工作

状态,称为同步状态,在同步状态下,始终有3o=3i。

在锁相环保持同步的条件下,输入频率3i的最大变化范围,称为同步带宽,用3H表示。

超出此范围,环路则失锁。

失锁时,303i,如果从两个方向设法改变3i,使3i向30靠拢,进而使30=(3i-30),当30小到某一数值时,环路则从失锁进入锁定状态。

这个使PLL经过频率牵引最终导致入锁的频率范围称为捕捉带

3po

同步带3H,捕捉带3p和VCO中心频率30的关系如图7o

“0

3

4

图7

实验原理及步骤

利用CMOS固有的低功耗、宽工作电源、集成度高等特点,可以设计出性能良好、使用方便的锁相环单片电路。

其中CD4046是一种能工作在1MHZ以下的通用PLL产品,它广泛应用于通信计算机接口领域。

图8示出CD4046的电路方框功能图在这个单片集成电路中,内含两个相位比较器,其中PD1是异或门鉴相器;

PD2是边沿触发式鉴相器。

另外电路中含有一个VCO,—个前置放大器A1,一个低通滤波器输出缓冲放大器A2和一个内部5V基准稳压管。

从图8可看出,引脚(16)是正电源引入端;

(8)脚是负电源端,在用单电源时接地;

(6)脚,(7)脚外接电阻C67;

(11)脚外接电阻R11和C67决定了VCO的自由振荡频率;

(12)脚外接电阻R12,它用作确定在控制电压为零时的最低振荡频率fcmin;

(5)脚为

VCO禁止端,当(5)脚加上“1”电平图8CD4046原理图

(即Vdd)时,VCO停止工作,当为“0”

电平(即Vss)时,VCO工作;

(14)脚是PLL参考基准输入端;

(4)脚是VCO输出;

(3)是比较输入端;

(2)和(13)脚分别是PD1和PD2的输出端;

(9)脚是VCO的控制端;

(10)是缓冲放大器的输出端;

(1)脚和

(2)脚配合可

做锁定指示;

(15)脚是内设5V基准电压输出端实验一、PLL参数测试一、压控灵敏度Ko的测量

如图9,V(9)从0~9V

每隔1伏测一点,作出f-V(9)

曲线,从曲线求Ko。

(Ko的单位是

rad/s.v)同时测出V(9)=

1/2VDD=4.5V时VCO的频率fo、

所以运放的输出Ua=KaUf+KmUm=2Uf-Uw

信号源为一频率连续可调的方波发生器。

实验步骤

(即中心频率)

4.连接信号源和4046A的PD1,用双踪示波器观察Ui、Uo,可观察到两个锁定的方波信号,其相差约为n/2o

5.调Rw,观察Ud波形的变化,用示波器观察Ud、Ui、Uo,应能观察到它们符合图3所示的相位关系。

6.通过用示波器测Ud的占空比测Be(参考图3)用数字电压表测Uf(即U),

9e从d6到5M6,每d6测一点,作出Uf~9e曲线,并由曲线求出Kd(单位为V/Rad)。

可调节示波器X轴扫描速度,让Ud的一个周期在荧屏上显示整六格,则每格就代表n/6,这样可以提高测量速度。

三、环路开环增益的测量(Kh)

Ui1-

PD1

LPF

VCO

Uo

Ui2-

图12环路开环增益测量方块图

开环增益即为环路直流总增益Kh=Aw/A9=KdKoKf(0),式中Kf(0)

为频率为0时,环路低通滤波器的传递函数,显然当用比例积分滤波器时,Kf

(0)=1,二Kh=KdKo。

实验方块图如图12,注意不用运放,LPF为附录3中的(b)。

当鉴相器比较两同相信号时,UF=0,VC0振荡于fmin;

当鉴相器比较两反相信号时,UF=VDD

VCO振荡于fmax。

做这实验时应注意是开环。

在理想情况下

Kh=Aw/A0=2nAf/A0=2n(fmax-fmin)/n=2(fmax-fmin)

实验中信号源即为图11信号源,其Outl和Out2为倒相信号。

四、同步带、捕捉带测量实验方块如图13(LPF为附录3中的(b))

|r

信号源

Ui

图13同步带、捕捉带测量方块图

1.同步带的测量:

调信号源(图11)频率约为4046A的中心频率。

示波器分别测Ui和Uo,并以Ui作为示波器的触发同步信号,频率计测Ui,这时示波器可显示两个稳定的波形,即Ui和Uo是锁定的。

在一定范围内缓

慢改变信号源频率,可看到两个波形的频率同时变化,且都保持稳定清晰,这就是跟踪。

但当信号源频率远大于(高端)或远小于(低端)4046A的中心频率时,Ui波形还保持稳定清晰,但Uo不能保持稳定清晰,这就是失锁。

记下刚出现失锁时的Ui频率即高端频率fHH和低端频率fHL,贝侗步带AfH=fHH—fHL。

由于我们用的是PD1,是异或门相鉴器,当Ui和Uo为分数倍数关系时,也可能出现两个稳定的波形,这种情况应认为是“失锁”。

只有出现两个同频的稳定波形时才认为是“锁定。

2•捕捉带的测量:

环路失锁后,缓慢改变信号源频率,从咼端或低端向4046A的中心频率靠近,当信号源频率分别为fph和fpL时,环路又锁定。

则环路捕捉带△fP=fPH—fPL。

五、3n、

实验如图14。

我们知道,当信号源的频率突然改变时(即对应Uj方波的前后沿),UF都产生一次阻尼振荡。

从阻尼振荡波形可测出A1、A2、

T,其物理意义见图14。

并由A1、A2、T求出

PLL的3n和E:

2A1、

ln(A2)

i

实验步骤:

断开4046B(4)与4046A(14)的连线,分别调W2W1使4046A与4046B都振荡在4046A的中心频率上。

然后接上连线,这时应可观察到锁定波形。

再加入Ui(几百HZ,几百mV-P的方波)。

示波器测UF和Ui,

LPF为附录3中的(a),记录UF的

A1、A2,T,并计算出E和3n。

要注意的是,*是叠加有高频信号的低频阻尼振荡信号。

A1、A2,T

应是低频信号的振幅和周期

实验二、PLL应用实验

一、PLL频率合成器实验

频率合成器的基本原理如图15从PLL原理知,当PLL处于锁定状态时,PD两个输入信号的频率一定精确相等。

所以可得:

图15

若fi为晶振标准信号,则通过改变分频比N,便可获得同样精度的不同频率信号输出。

选用不同的分频电路就可组成各种不同的频率合成器。

)1KHZ标准信号源制作

1、用CMOS!

非门和4M晶体组成4MHz振荡器,如图16。

图中Rf使F1工作于线性放大区。

晶体的等效电感,C1、C2构成谐振回路。

C1、C2可利用器件的分布电容不另接。

F1、F2、F3使用CD4069

2、据讲义后面的CD4518管脚图,测量并画出Q1,Q2Q3Q4及

CP之间的相位关系图。

CD4518图16

VDD(不能用直流电平为0的交

Q4的下降沿作示波器的

是CMO器件,输入的CP信号一定要用CMOS号,即低电平为地,高电平接近流方波信号)其高低电平不能超过器件电源的正负电平。

测量时示波器的一个通道固定测Q4,都以Q4作示波器的同步触发源,且以开始扫描点,另一个通道轮流测其他信号(CPQ1、Q2Q3)这样就能保证相位准确而且开始扫描点为计数器的“0”状态。

同时调节CP信号的频率或示波

器的扫描速度让示波器标尺的每大格代表一个CP周期。

这样就可方便测量。

CD4518是BCD码计数器,其真值表不难自己写出,然后和测出的波形进行对照,理解其工作原理,尤其是Q2的波形特别注意。

3、根据上面测出的4518的波形图,用二片CD4518(共4个计数器)组成一个4000分频器,也就是一个四分频器,三个十分频器,这样就可把4MHz的晶振信号变成1KHz的标准信号。

连线时应注意清零端的灵活应用

2)、用一片CD4017乍分频器组成2-9KHZ频率合成器

1、根据附录2中的4017管脚图,用示波器测试4017(十进制计数分配器)功能。

测量时应固定一个通道测“0”,并以该信号作作示波器的同步触发源,且以上升沿作示波器的开始扫描点。

测量并画出4017的“0”,“1”,“2”,“9”

输出端信号相对CP信号的波形。

理解4017的工作原理。

2、将CP(14)作输入端,“0”(3)作输出端,R(15)分别接“2”、“3”,一“9”则4017就成为二、三,一“丸”等分频器,理解其工作原理。

将上述4017组成的分频器代入图15中的祥N分频器,就组成2――9KHZ频率合成器。

如图

17

3)、拨盘开关式1——999KHZ频率合成器

1、单片CD4522®

率合成器。

CD4522是可预置数的二一^十

进制1/N减计数器。

其引脚见附录。

其中D1-D4是预置端,Q1-Q4

是计数器输出端,其余控制端的

功能如下:

PE(3)=“1”时D1—D4值置

进计数器

EN(4)=“0”且CP(6)时,计数器(Q1-Q4减计数;

CF(13)=“1”且计数器(Q1-Q4减到“0”时,QC(12)=“1”

Cr(10)=“1”时,计数器清零。

(1)单片4522分频器,如图18

拨盘开关为BCD码开关,如当数据

窗口显示“3”时则A和“1”“2”相连;

当显示“5”时,贝UA和“1”

“4”相连,其余类推。

4个100K

电阻用来保证当拨盘开关为某脚不

和A相连,也就是悬空时,为低电平。

工作过程是这样的:

设拨盘开关拨

到“N,当某时刻PE(3)=“1”

则N置到IC内的计数器中,下一个CP来时,计数器减计数变为N-1,……,一直到第N个CP来时,计数器为0。

这时由于CF(13)=“1”二QC(12)=

“1”也即PE(3)=“1”又恢复到开始状态,开始一个新的循环。

很显然,每来个N个CPQC(12)就会出现一个高电平,也就是QC(12)应是CP的N分频信号。

实验步骤:

如图18连好,让拨盘开关分别为1,2,……9,用示波器观察CP(6)和QC(12)的波形。

(2)单片CD4522频率合成器

用图18电路代替图17中4017部分,组成1-9KHz频率合成器

2、用三片4522组成1――999HHZ®

率合成器

如图19,最终应做到拨盘开关的数值是多少,VCO输出信号的频率就是多

v少KHz(注意:

该电路后面还要用,该实验做完后暂时不要拆掉)

图19

四)、健盘置数式1――999KHZ频率合成器。

就是用数字健盘以及一些数字IC替代b实验中的拨盘开关组成1――

999KHZ频率合成器。

最终应做到:

当顺序按键盘的任意三个健(如5.9.2)时,则输出信号的频率就为592KHz置数部分的框图如图20

图21

图22

根据上面资料,请用HM9102D自己设计一个号码脉冲发生器,要求:

1)VDD=5V;

2)断续比为1.5:

1

3)号码脉冲输出幅度为0到9V(注意:

DP输出端是OC电路,上拉电阻取100K

另外,为安全起见,输出和负载之间应串一个10K电阻,如图21)2、开门脉冲和记数脉冲发生器

为了使后面的控制引导电路能正常工作,还需一种开门脉冲。

也就是每按一次键,即每输出一列脉冲(不管这一列含有几个号码脉冲)就要产生一个开门脉冲。

同时为了使后面的记数电路能正确记数,还应保证“先开门后送计数脉冲”。

也就是要求开门脉冲要比送到计数器的号码脉冲超前一点。

所以开门脉

冲和号码脉冲的时间关系应如图23所示。

注意:

HM9102D输出的是负脉冲。

图24

我们可用单稳电路(CD4098达到上述目的,如图24。

其中单稳1用后沿(上升沿)触发,C,R分别为47nF、470KQ;

单稳2用前沿(下降沿)触发,C,R分别为0.22卩、3M3Q,这样单稳2的暂态时间T'

大于触发信号周期T,就可连续触发,形成开门脉冲。

根据上述原理以及附录中4098的管脚功能,自己设计这部分电路

3、控制引导电路及计数、置数电路:

如图25。

当按第一次键时,开门脉冲通过4017仅将百位的门(4011)打开,让紧接着来的号码脉冲通过,并对百位计数器(4518)计数。

4518的输出就替代实验b中的拨盘开关作为4522的置数信号。

当第二次按时,4017将百位和个位的门关死,打开十位的门,让号码脉冲对十位的计数器计数。

第三次按时,则仅打开个位的门。

在按百位数之前,应对4017和4518进行请零。

根据图25,搭出具体电路,完成1――999KHZ键盘置数式频率合成器。

清零部分先设计成手动的,即清零通过一导线用手动式碰一下高电平。

再设计成:

当第四次按键盘时,自动清零。

U100K

图25

二、PLL调频(FM)解调

如图26,4046B组成FM信号形成电路。

4046A组成PLL式FM解调电路只要处于锁定状态,4046A(10)脚就输出叠加有一定载波成分的调制信号。

经有源LPF滤去载波成分就可解出调制信号。

1•测由运放324组成的有源LPF的截止频率f'

(输入信号应加在10卩电容左侧,但又不能加到4046A(10)脚。

输出信号不能限幅);

2.4046A(14)接地,测其中心频率f。

(应断开4046B⑷)

3.调4046B⑷的VCO频率至4046A的fo;

4.4046B⑷接4046A(14),观察锁定波形;

加入Vi(100Hz1KHz的正弦波)观察并画出Vi、4046A(10)及V。

的波形。

图26

三、锁相式双音多频信号(DTMF)解码器

1、实验原理

在自动电话交换网中,有两种呼叫信号:

一种是一串串脉冲信号(如前面

实验中用的HM9102D产生的信号);

另一种是双音多频信号(DTMF)。

一台

按纽电话机共有12个按纽,分别代表09等10数字及“*”、“#”两个符号。

每按一个按纽就产生两种音调的信号。

不同按纽有不同的音调组合。

DTMF信

号有两组音调,称高频群(H)和低频群(L),每个按纽各由H和L中的一个频率组成。

按纽的频率组合如表2所示。

双音多频按纽电话有很多优点:

选号速度比脉冲选号速度快得多;

在通话

状态时还能发送其他信号(如计算机数据或遥测遥控信号);

抗干扰性强,传输特性好等等。

为了产生DTMF信号,现在有很多专用芯片,5087就是其中之一,5087已广泛应用于按键式新型电话机,程控交换机等通信设备和其它电子仪器,是我国优选的通信集成电路品种。

其引脚如图27。

引出端功能说明

COLiCOL4――列输入端。

它们通过内部电阻Rc保持于Vss。

当与一行输入相接时,该输入将呈有效逻辑电平(近似为Vdd/2)

ROWiROW4――行输入端。

它们通过内部电阻Rr保持于Vdd。

OSC1、OSC0――振荡器输入与输出端,通常于两端间外接3.579545MHz

晶体,产生电路时钟信号。

MUTE――静默输出。

当无按键输入时,该CMOS输出端为Vss电平,当有一按键输入时,该端呈现Vdd电平。

其输出状态与INHst无关。

XMTR――发送转换开关。

它实际是集电极接于Vdd的双极型晶体管之发射极输出,若无按键输入时,该输出保持在Vdd电平;

若有一按键输入时,该端呈高阻态,其状态于INTst无关。

INHst――单音禁止输入。

该端通过内部上拉电阻接于Vdd。

若INHst悬空或接至Vdd,电路可产生单音或DTMF信号,若INTst输入Vss电平,则电路只会产生DTMF信号,而禁止出现单音。

DTMF——DTMF信号输出端。

它实际是集电极接于Vdd的NPN晶体管之发射极输出。

行和列单音经运放相加与稳幅后,加到晶体管的基极,经驱动而输出。

5087的应用电路如图28

当按单键时,产生DTMF信号;

当同时按同一列,或同一行的多个键时产生该行或该列所对应的单音信号;

当同时按不同行不同列的两键时,不产生信号。

图29

双音多频(DTMF)信号解码有多种方法,本实验利用具有很高频率选择性的锁相环集成电路来完成的。

每当输入端收到某一键所对应的一对频率时,就输出一个表示该键的脉冲。

图29表示解码用的LM567锁相环集成电路的方框图。

RiCi决定振荡器的中心频率;

R2C2是环路滤波器,其中C2可在外部调整,改变其通频带。

当环路锁定时,鉴相器有一脉冲输出,经放大器放大后由

(8)脚输出低电平。

当环路失锁时,(8)脚输出高电平。

LM567的中心频率为:

七1.1

fo=

RiCi

式中:

RiCi的单位分别为欧姆和法拉。

环路带宽BW为:

Vin

BW=1070

式中,BW是环路捕捉范围相对于中心频率fo的百分率;

Vin是输入信号有效值,应200mVrms,单位伏特;

C2单位为f;

fo的单位为Hz。

图30为用LM567进行单一频率检测电路。

如567的中心频率为fo,当ui中包含有fo成分时,(8)输出低电平,否则高电平。

DTMF信号解码通常是由两个锁相环路成对运用的,分别调谐于输入的两

个频率,如图31所示。

当输入信号同时包含两个频率时,输出可或逻辑“1”

图32是一个具有公共输入信号的按纽音调解码器,用以解调6组DTMF信号。

电路中用5个锁相环路,分别调谐于不同频率。

电路的功能是能检测出输入信号是由五个频率中的哪两个频率组成,并驱动6个或非门产生表示6个数字的

输出信号。

(如用7个LM567和12个或非门则可解调12个DTMF信号。

10K

图30

2、实验步骤:

1)567捕捉带测试:

电路如图30。

调W,让(5)脚的频率为1000Hz,

Vin=100mVrms(用数字电压表测),测出捕捉范围。

2)DTMF信号发生器。

电路如图28,—定要注意IC的电源端不要接错。

用示波器观察单音信号和双音信号(按双键和单键),并用频率计测7个单音信号频率。

3)DTMF信号的解码(PLL法),电路如图32所示,6路输出对应键盘的1、2、3、4、

5、6键。

5块567中2块调谐于低频群,3块调谐于咼频群。

或非门

用CD4001,每个或非

门的输出端接一个如图33的跟随器。

最终应做到按键盘中的某个键时则对应的发光二极管就亮起来

图31

34

697

8

5

6

17

♦5V

5V

10

104

<

DTMF103

1u|10u

770

|10u

103

十—

10K104丁丄1u

片5V

1209

■7L

L

I0K

1336

r

5V5V

1041u|10u

10K104

1477

1

1u10u

图32

3-

四、PLL数字调谐实验

现代的接收机(如电视机、收音机)大多采用超外差接收方式。

如要接收的信号的载波频率为fc,则接收机要产生一个本振信号,其频率fL=fc+fi,其中fi为中频。

在模拟调谐方式中,本振信号一般是由LC振荡回路产生的。

调谐(调台)时,一般是用改变

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2