逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx

上传人:b****2 文档编号:3094573 上传时间:2023-05-05 格式:DOCX 页数:13 大小:239.27KB
下载 相关 举报
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第1页
第1页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第2页
第2页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第3页
第3页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第4页
第4页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第5页
第5页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第6页
第6页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第7页
第7页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第8页
第8页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第9页
第9页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第10页
第10页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第11页
第11页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第12页
第12页 / 共13页
逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx

《逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx》由会员分享,可在线阅读,更多相关《逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx(13页珍藏版)》请在冰点文库上搜索。

逆变弧焊电源峰值电流模式双闭环控制系统的研究.docx

逆变弧焊电源峰值电流模式双闭环控制系统的研究

逆变弧焊电源峰值电流模式双闭环控制系统的研究

方臣富1,2殷树言2侯润石3于明1王进成4

(1.江苏科技大学材料学院,江苏镇江212003;2.北京工业大学机电学院,北京100022;3.清华大学机械工程系,北京100084;4.凯尔达电焊机有限公司,浙江杭州310018)

摘要:

采用电压模式单闭环控制系统的逆变弧焊电源,系统动态响应速度慢,不能对主电路功率器件进行实时电流控制,中频变压器无抗偏磁能力,因此可靠性较差。

本文研制的逆变弧焊电源采用双闭环控制系统,内环实现了在每个开关周期对功率器件的峰值电流进行实时控制,提高了系统动态响应速度,消除了中频变压器偏磁现象;外环控制输出的平均电流,提高了输出电流的精度和系统的可靠性。

关键词:

逆变,弧焊电源,峰值电流模式,双闭环控制

1.引言

逆变式弧焊电源DC-DC功率变换器的控制方式可分为电压模式和电流模式两大类[1]。

电压模式是指控制电压直接控制变换器的占空比(变换器输出电压与占空比成比例);电流模式是指控制电压直接控制变换器输出的平均电流或峰值电流(变换器输出平均电流或峰值电流不与占空比成比例)。

目前,逆变弧焊电源多采用电压模式控制,系统动态响应速度慢,不能对主电路功率器件进行实时电流控制,无抗偏磁能力。

本文研制的逆变弧焊电源采用双闭环控制系统,内环在每个开关周期对功率器件的峰值电流进行实时控制,从而提高系统动态响应速度,消除中频变压器偏磁现象;外环控制输出的平均电流,保证输出电流的精度和系统的可靠性。

2.电压模式单闭环控制系统存在的问题

电压模式控制原理框图如图1所示。

uin为电网交流电经整流滤波后的直流电压。

uref(给定电压),uo(反馈电压,正比于输出电压或输出电流),经误差放大器E/A进行PI调节后得到了控制电压ue,它与振荡器输出电压uosc经比较器比较后得到PWM信号,该信号经驱动电路后控制功率器件的开关。

电压模式控制系统只有一个闭环,当有网压波动或受其它干扰时,要等到输出电压或输出电流有变化后控制器才能进行调节,故动态响应时间较长,不能对功率器件的电流实时检测,应用在全桥逆变电路时,需要其它辅助电路实现抗磁芯偏磁和对功率器件进行过流保护。

 

图1电压模式控制原理图

Fig.1Controlprinciplediagraminvoltagemode

图2电压模式控制的恒流输出特性全桥逆变弧焊电源原理框图

Fig.2Principlediagramoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinvoltagemode

图2为电压模式控制的恒流输出特性全桥逆变弧焊电源原理框图。

采用拉氏变换和自控理论可得图2各环节的传递函数。

误差放大及补偿电路环节(采用PI调节器时)传递函数:

(1)

PWM及驱动电路环节传递函数:

(2)

其中,k为振荡器锯齿波上升率,T为振荡器周期。

取样环节传递函数:

(3)

其中,n为霍尔电流传感器(LEM)内部线圈匝数,Rc为内阻。

滤波环节传递函数:

(4)

变换器环节(虚线框部分所示功率电路和电弧负载)传递函数:

(5)

(6)

其中,

为输出电流I0对整流滤波后的直流电压uin的传递函数,

为输出电流I0对占空比D的传递函数。

根据自控理论,利用Matlab对国内某品牌电压模式闭环控制式ZX7-400弧焊电源进行分析(其中kp=1,τi=0.0007,T=0.0001,us=540/8=67.5V,L=50µH,负载电阻值为0.24Ω,D=0.355时),得到如图3所示的开环幅频特性和相频特性。

其中,曲线1为控制到输出的特性(即G2·G3·G4),曲线2为校正环节的特性(即G1·G5),曲线3为校正后的特性(即G1·G2·G3·G4·G5)。

图4为电源在不同负载下系统的阶跃响应仿真波形。

由图可知:

随着负载电阻值的减小,响应速度显著加快,当负载电阻很小时,系统有超调。

MMAW和CO2逆变弧焊电源输出经常短路(负载电阻很小),故输出电流超调会很大,主电路功率器件可能出现过流现象,从而降低逆变弧焊电源的可靠性。

图3电压模式控制的恒流输出特性全桥逆变弧焊电源的开环bode图

Fig.3Openloopbodegraphoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinvoltagemode

图4电压模式控制的恒流输出特性全桥逆变弧焊电源开关的闭环阶跃响应

Fig.4Closeloopstepresponsegraphoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinvoltagemode

3.峰值电流模式控制的逆变弧焊电源

3.1峰值电流模式双闭环控制系统的控制原理

峰值电流模式控制原理如图5所示。

内环控制功率器件的峰值电流(等于输出电感的峰值电流除以变压器变比),外环控制逆变弧焊电源输出的平均电压(恒压特性逆变弧焊电源)或平均电流(恒流特性逆变弧焊电源)。

ue的获得与电压模式相同,ui为中频变压器原边桥臂IGBT电流瞬时值转换得到的电压值。

当时钟信号到来时,Q输出高电平,输出电感电流开始上升,内环的峰值电流采样值ui比例增加。

当ui达到ue时,PWM比较器输出电平翻转,触发器R端为高电平,输出端为低电平,电感电流开始下降,直到下一个时钟信号的来临。

图5峰值电流模式控制原理图

Fig.5Thecontroldiagraminpeakcurrentmode

峰值电流模式双闭环控制系统通过内环电流反馈,实现了对功率器件电流逐个周期控制,使功率器件不会出现过流现象。

由于ue的值相对变化较慢,所以相邻两个电流脉冲的峰值相同(脉冲宽度不一定相同),这一特性使得双向磁化工作的变压器磁芯不会偏磁;当负载变化或网压波动时,IGBT电流瞬时值的电流上升速度在当前脉冲内立即变化,脉冲宽度也就立刻变化,因此系统响应速度很快。

当输出的平均值偏离给定值时,误差放大器将调整ue值,改变峰值电流,以保证输出平均电压或电流值的精度[2]。

3.2峰值电流模式控制系统分析

图6为峰值电流模式控制的恒流输出特性全桥逆变弧焊电源原理框图。

uin

图6峰值电流模式控制的恒流输出特性全桥逆变弧焊电源原理框图

Fig.6Principlediagramoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinpeakcurrentmode

由于全桥逆变电路可等效为BUCK电路,因此分析时峰值电流反馈可由电感电流获得(电感电流峰值与IGBT集电极电流峰值之比为变压器的变比),设ia为电感电流瞬时值经传感器变换而得的电流值,并设电流变换系数为Ni,即:

(8)

ia对控制信号ue的电流内环闭环传递函数[3]:

(9)

ωs是电感电流交流成分的频率,Qs为阻尼系数,其表达式为:

(10)

其中,m1为电感电流上升率,m2为电感电流下降率,m为补偿斜率。

(11)

(12)

把(8)、(10)、(11)和(12)代入(9)可得,输出电流io对控制信号ue的电流内环闭环传递函数:

(13)

io对输入电压us的开环传递函数为:

(14)

利用Matlab对所设计的峰值电流模式恒流输出特性全桥弧焊电源分析(其中kp=1,τi=0.00005,T=0.000015,us=540/8=67.5V,L=50µH。

取负载电阻值为0.24Ω,D=0.355,m1=0.0087A/µs,m2=0.0048A/µs,取m=0.0135A/µs),得到如图7所示系统开环幅频特性和相频特性,其中,曲线1为控制到输出的特性(即G7·G4),曲线2为校正环节的特性(即G1·G5),曲线3为校正后的特性(即G1·G7·G4·G5)。

从曲线1可以看出从控制到输出的特性在变换器频率的一半以下近似为比例特性,这是由于内环“吸收”了电感的作用(系统惯性显著降低),控制到输出的特性的转折频率在变换器频率的一半处,不受负载的影响,图7(峰值电流模式控制)曲线1比图3(电压模式控制)曲线1的转折频率高得多。

图8所示是峰值电流模式恒流输出特性全桥弧焊电源系统在上述参数下不同负载的阶跃响应仿真波形。

由图8可知,系统响应的速度比电压模式控制快得多,而且负载电阻很小时没有超调。

图9和图10所示是电压模式单闭环控制系统和峰值电流模式双闭环控制系统弧焊电源在实验条件和测试条件相同的条件下,负载突变时(输出电流为150A,负载电阻从0.2Ω突变到0.05Ω)输出电流波形。

由图可知:

峰值电流模式控制下,输出电流波动比电压模式控制下的波动显著减小。

图7峰值电流模式控制的恒流输出特性全桥逆变弧焊电源的开环bode图

Fig.7Openloopbodegraphoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinpeakcurrentmode

图8峰值电流模式控制的恒流输出特性全桥逆变弧焊电源的闭环阶跃响应

Fig.8Closeloopstepresponsegraphoffull-bridgearcweldinginverterwithconstantcurrentoutputcharacteristicinpeakcurrentmode

输出电流

(50A/格)

基线

(0.5ms/格)

图9电压模式单闭环控制的弧焊电源在负载突变时输出电流波形

Fig.9Thewaveformofcurrentontheloadchangingsuddenlyinarcweldingsupplyadoptingonecloseloopcontrolinvoltagemode

基线

输出电流

(50A/格)

(0.5ms/格)

图10峰值电流模式双闭环控制的弧焊电源在负载突变时输出电流波形

Fig.10Thewaveformofcurrentontheloadchangingsuddenlyinarcweldingsupplyadoptingtwocloseloopscontrolinperkcurrentmode

5.结论

(1)电压模式单闭环控制的逆变弧焊电源当负载电阻很小时(如短路状态)电流超调很大,主电路功率器件可能出现过流现象,从而降低逆变弧焊电源的可靠性。

(2)峰值电流模式双闭环控制的逆变弧焊电源输出电感被内环“吸收”(系统惯性显著降低),从控制到输出的频率特性在变换器频率的一半以内近似为比例特性,且不受负载的影响,且系统性能明显优于采用电压模式。

(3)变换器采用峰值电流模式控制,内环控制功率器件每个开关周期的峰值电流,实现功率器件电流限制和自动纠正偏磁并大大提高了系统的响应速度;外环控制逆变弧焊电源输出的平均电流,保证其精度。

实验证明,采用峰值电流模式控制变换器不需要过流保护措施,功率器件的峰值电流被限制在设定值以下,电源的可靠性大大提高。

基金项目:

浙江省高新技术研究项目(2002X1C033)

作者简介:

方臣富,男,重庆人,1954年出生,副教授,博士研究生。

主要从事焊接设备及工艺、焊接电弧物理的研究工作,主持完成省部级和企业重大科技攻关项目20多项,研制成功40余个品种规格的先进焊接设备并实现产业化,获省部级科技奖6项,发表论文30余篇。

E-mail:

krdfangchenfu@

参考文献:

[1]周志敏,周纪海.开关电源实用技术—设计与应用[M].人民邮电出版社,2003:

29-30

[2]侯润石,方臣富.电流模式零电压零电流开关TIG焊机的研制[J],电焊机,2004:

34(11):

39-41

[3]TanFD,MiddlebrookRD.AUnifiedModelforCurrent-programmedConverter.PowerElectronics,IEEETransactiononPowerElectronics,1995,10(4):

397-408

Abstract:

Inarcweldinginverter,voltagemodeismostlyadopted,whichcontainsonlyonecontrolloop.Inthismode,thetransientresponseisslow,anditcan’tprovidethefluxbalanceofthemaintransformerandcurrentlimitedofpowerdevices,whichdecreasesthereliabilityofthepowersupply.Inthisthesis,peakcurrentmodeisadopted,whichcontainstwoloops.It’sinnerloopcontrolsthepeakcurrent,whileit’souterloopcontrolstheaveragecurrent.Ineachperiod,thepeakcurrentofIGBTsiscontrolled,thereforethefluxbalanceisobtainedandthetransientresponseisimprovedgreatly,whilefacilityoftheoutputcurrentandreliabilityofsystemareimproved.

Keywords:

inverter;arcweldingpowersupply;peakcurrentmode;doublecloseloopscontrol

Researchofdoublecloseloopscontrolsystemofpeakcurrentmode

aboutinverterarcweldingpowersupply

FANGChen-fu1,2,YINShu-yan2,HOURun-shi3,YuMing1,WangJin-Cheng4

(1.SchoolofMaterialScienceandEngineering,JiangsuUniversityofScienceandTechnology,Zhenjiang212003,China;2.BeijingUniversityoftechnology,CollegeofMechanicalEngineering&AppliedElectronicsTechnology,Beijing100022China;3.DepartmentofmechanicalEngineering,TsinghuaUniversity,Beijing100084China;4.KaierdaElectricWeldingMachineCO.LTD.,Hangzhou310018China)

说明:

(1)王主编及各位责编:

我希望今年10月,11月,12月在焊接学报各发表一篇文章,请关照将该文发表在10月份的专辑上(江苏科技大学已录用6篇)。

(2)另两篇文章(11月,12月)是我博士论文中有关变极性TIG焊接电弧物理、工艺和设备的研究内容,我将很快寄来。

(3)投ChinaWelding的文章一道寄来。

(4)欢迎王主编及各位责编到江苏科技大学和杭州凯尔达公司指导工作。

方臣富2005年7月27日

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2