年产20万吨甲醇生产工艺.docx

上传人:b****1 文档编号:3180311 上传时间:2023-05-05 格式:DOCX 页数:30 大小:256.21KB
下载 相关 举报
年产20万吨甲醇生产工艺.docx_第1页
第1页 / 共30页
年产20万吨甲醇生产工艺.docx_第2页
第2页 / 共30页
年产20万吨甲醇生产工艺.docx_第3页
第3页 / 共30页
年产20万吨甲醇生产工艺.docx_第4页
第4页 / 共30页
年产20万吨甲醇生产工艺.docx_第5页
第5页 / 共30页
年产20万吨甲醇生产工艺.docx_第6页
第6页 / 共30页
年产20万吨甲醇生产工艺.docx_第7页
第7页 / 共30页
年产20万吨甲醇生产工艺.docx_第8页
第8页 / 共30页
年产20万吨甲醇生产工艺.docx_第9页
第9页 / 共30页
年产20万吨甲醇生产工艺.docx_第10页
第10页 / 共30页
年产20万吨甲醇生产工艺.docx_第11页
第11页 / 共30页
年产20万吨甲醇生产工艺.docx_第12页
第12页 / 共30页
年产20万吨甲醇生产工艺.docx_第13页
第13页 / 共30页
年产20万吨甲醇生产工艺.docx_第14页
第14页 / 共30页
年产20万吨甲醇生产工艺.docx_第15页
第15页 / 共30页
年产20万吨甲醇生产工艺.docx_第16页
第16页 / 共30页
年产20万吨甲醇生产工艺.docx_第17页
第17页 / 共30页
年产20万吨甲醇生产工艺.docx_第18页
第18页 / 共30页
年产20万吨甲醇生产工艺.docx_第19页
第19页 / 共30页
年产20万吨甲醇生产工艺.docx_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

年产20万吨甲醇生产工艺.docx

《年产20万吨甲醇生产工艺.docx》由会员分享,可在线阅读,更多相关《年产20万吨甲醇生产工艺.docx(30页珍藏版)》请在冰点文库上搜索。

年产20万吨甲醇生产工艺.docx

年产20万吨甲醇生产工艺

海南大学

毕业设计

设计说明书

题目:

年产20万吨煤制甲醇生产工艺初步设计

学号:

10120420

姓名:

赵丹停

学院:

济源职业技术学院

系别:

冶金化工系

专业:

使用化工

指导教师:

徐贵敏

完成日期:

XXXXXXXXXX

摘要…………………………………………………………………………1

前言………………………………………………………………………………

第一章概述………………………………………………………………………1

1.1甲醇的性质………………………………………………………3

1.2甲醇的用途……………………………………………………………

1.3甲醇的生产方法………………………………………………………….

1.4设计的目的和意义…………………………………………………………………5

1.5设计的指导思想………………………………………………………………5

第二章低压法合成甲醇工艺流程及主要设备………………………5

2.1反应原理及特点…………………6

2.2原料气的生产方法………………………………………………………6

2.2.1固体燃料气化法…………………………………………………8

2.2.2烃类蒸气转化法………………………11

2.2.3重油部分氧化法………………………………17

2.2.4GSP冷激气化法……………………………22

2.3甲醇合成工艺条件……………………………22

2.4甲醇合成工艺流程……………………………………………………

2.5甲醇合成反应器……………………………32

2.5.1冷激式绝热反应器……………………………………………

2.5.2列管式等温反应器………………………………………….

第三章工艺计算……………………………………34

3.1物料衡算…………………………………………………35

3.2热量衡算………………35

第四章安全卫生……………………………………………………………59

4.1一氧化碳中毒的症状、急救及预防措施…………………………………………59

4.2甲醇中毒症状和急救……………………………………………………………60.

4.3甲醇生产中的防火和防爆…………………………………………………63

第五章三废处理………………………………………………………………64

10参考文献…………………………………………………………………66

致谢…………………………………………………………………………65

摘要

甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。

近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广使用,甲醇的需求大幅度上升。

为了满足经济发展对甲醇的需求,开展了此20万t/a的甲醇项目。

设计的主要内容是进行工艺论证,物料衡算和热量衡算等。

本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;利用GSP气化工艺造气;NHD净化工艺净化合成气体;低压下利用列管均温合成塔合成甲醇;此外严格控制三废的排放,充分利用废热,降低能耗,保证人员安全和卫生。

关键词:

甲醇、合成。

前言

甲醇是醇类中最简单的一元醇。

1661年英国化学家R.波义耳首先在木材干馏后的液体产物中发现甲醇,故甲醇俗称木精、木醇。

在自然界只有某些树叶或果实中含有少量的游离态甲醇,绝大多数以酯或醚的形式存在。

1857年法国的M·贝特洛在实验室用一氯甲烷在碱性溶液中水解也制得了甲醇。

1923年德国BASF公司首先用合成气在高压下实现了甲醇的工业化生产,直到1965年,这种高压法工艺是合成甲醇的唯一方法。

1966年英国ICI公司开发了低压法工艺,接着又开发了中压法工艺。

1971年德国的Lurgi公司相继开发了适用于天然气-渣油为原料的低压法工艺。

由于低压法比高压法在能耗、装置建设和单系列反应器生产能力方面具有明显的优越性,所以从70年代中期起,国外新建装置大多采用低压法工艺。

世界上典型的甲醇合成工艺主要有ICI工艺、Lurgi工艺和三菱瓦斯化学公司(MCC)工艺[1]。

目前,国外的液相甲醇合成新工艺[2]具有投资省、热效率高、生产成本低的显著优点,尤其是LPMEOHTM工艺,采用浆态反应器,特别适用于用现代气流床煤气化炉生产的低H2/(CO+CO2)比的原料气,在价格上能够和天然气原料竞争。

我国的甲醇生产始于1957年,50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。

60年代建成了一批中小型装置,并在合成氨工业的基础上开发了联产法生产甲醇的工艺。

70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95kt/a低压法装置,采用英国ICI技术。

1995年12月,由化工部第八设计院和上海化工设计院联合设计的200kt/a甲醇生产装置在上海太平洋化工公司顺利投产,标志着我国甲醇生产技术向大型化和国产化迈出了新的一步。

2000年,杭州林达公司开发了拥有完全自主知识产权的JW低压均温甲醇合成塔技术[3],打破长期来被ICI、Lurgi等国外少数公司所垄断拥的局面,并在2004年获得国家技术发明二等奖。

2005年,该技术成功使用于国内首家焦炉气制甲醇装置上

一、概述

1.1甲醇性质

甲醇俗称木醇、木精,是最饱和醇中最简单的一元醇,分子式CH3OH。

在通常条件下是一种无色、透明、易燃、有毒、易挥发的液体,略带酒精味;分子量32.04,熔点-97.8℃,沸点64.7℃,闪点16℃,自燃点473℃,能和水、乙醇、乙醚、苯、酮类和大多数其他有机溶剂混溶。

蒸气和空气形成爆炸性混合物,爆炸极限6.0%~36.5﹪(体积比)。

化学性质较活泼,能发生氧化、酯化、羰基化等化学反应。

1.2甲醇用途

甲醇是重要有机化工原料和优质燃料,广泛使用于精细化工,塑料,医药,林产品加工等领域。

甲醇主要用于生产甲醛,消耗量要占到甲醇总产量的一半,甲醛则是生产各种合成树脂不可少的原料。

用甲醇作甲基化试剂可生产丙烯酸甲酯、对苯二甲酸二甲酯、甲胺、甲基苯胺、甲烷氯化物等;甲醇羰基化可生产醋酸、醋酐、甲酸甲酯等重要有机合成中间体,它们是制造各种染料、药品、农药、炸药、香料、喷漆的原料,目前用甲醇合成乙二醇、乙醛、乙醇也日益受到重视。

甲醇也是一种重要的有机溶剂,其溶解性能优于乙醇,可用于调制油漆。

作为一种良好的萃取剂,甲醇在分析化学中可用于一些物质的分离。

甲醇还是一种很有前景的清洁能源,甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一;另外燃料级甲醇用于供热和发电,也可达到环保要求。

甲醇还可经生物发酵生成甲醇蛋白,富含维生素和蛋白质,具有营养价值高而成本低的优点,用作饲料添加剂,有着广阔的使用前景

1.3甲醇的生产方法

工业上生产甲醇曾有过许多方法,早期用木材或木质素干馏法制甲醇,此法需耗用大量木材,而且产量很低,现早已被淘汰。

氯甲烷水解法也可以生产甲醇,但因水解法价格昂贵,没有得到工业上的使用。

甲烷部分氧化法可以生产甲醇,而且原料便宜,工艺流程简单,但因生产技术比较复杂,副反应多,产品分离困难,原料利用率低,工业上尚未广泛采用。

目前,工业生产上主要是采用合成气(CO+H2)为原料的化学合成法。

此法已有五十多年的历史。

由于所使用的催化剂不同,反应温度和反应压力的不同,又分为高压法、低压法和中压法。

1.4设计的目的和意义

由于我国石油资源短缺,能源安全已经成为不可回避的现实问题,寻求替代能源已成为我国经济发展的关键。

甲醇作为石油的补充已成为现实,发展甲醇工业对我国经济发展具有重要的战略意义。

煤在世界化石能源储量中占有很大比重(我国情况更是如此),而且煤制甲醇的合成技术很成熟。

随着石油和天然气价格的迅速上涨,煤制甲醇更加具有优势。

本设计遵循“工艺先进、技术可靠、配置科学、安全环保”的原则;结合甲醇的性质特征设计一座年产20万吨煤制甲醇的生产车间。

通过设计可以巩固、深化和扩大所学基本知识,培养分析解决问题的能力;还可以培养创新精神,树立良好的学术思想和工作作风。

通过完成设计,可以知道甲醇的用途;基本掌握煤制甲醇的生产工艺;了解国内外甲醇工业的发展现状;以及甲醇工业的发展趋势。

1.5设计的指导思想

以设计任务书为基础,适应我国甲醇工业发展的需要。

加强理论联系实际,扩大知识面;培养独立思考、独立工作的能力。

整个设计应贯彻节省基建投资,充分重视技术进步,降低工程造价,节能环保等思想,设计生产高质量甲醇产品。

二、低压法合成甲醇工艺流程

2.1反应原理及特点

1.主反应

当反应物中有二氧化碳存在时,二氧化碳按下列反应生成甲醇:

2.副反应

又可分为平行副反应和连串副反应

①平行副反应

当有金属铁、钴、镍存在时,还可能有下列反应发生:

②连串副反应

这些副反应的产物还可以进一步发生脱水、缩合、酰化或酮化等反应,生成烯烃、醋类、酮类等副产物。

当催化剂中含有碱类时,这些化合物的生成更快。

副反应不仅消耗原料,而且影响甲醇的质量和催化剂寿命。

特别是生成甲烷的反一个强放热反应,不利于反应温度的控制,而且生成的甲烷不能随产品冷凝,甲烷在循环系统中循环,更不利于主反应的化学平衡和反应速率

2.2原料气的生产方法

合成甲醇的工业生产是以固体(如煤、焦炭)、液体(如原油、重油、轻油)或气体(如天然气及其它可燃性气体)为原料,经造气、净化(脱硫)变换,除二氧化碳,配制成一定配比的合成气。

在不同的催化剂存在下,选用不同的工艺条件可单产甲醇(分高、中、低压法),或和合成氨联产甲醇(联醇法)。

将合成后的粗甲醇经预精镏脱除甲醚,再精镏而得成品甲醇。

目前,合成氨生产原料按状态主要有固体原料(煤或焦炭),气体原料(天然气、油田气、炉气、石油废气、有机合成废气),液体原料(石脑油、重油)。

生产方法主要有固体燃料气化法(煤或焦炭)、烃类蒸汽转化法(气态烃、石脑油)重油部分氧化法(重油)。

2.2.1固体燃料气化法

固体燃料气化过程是以煤或焦炭为原料,在一定的高温条件下通入空气、水蒸气或富氧空气-水蒸气混合气,经过一系列反应生成含有一氧化碳、二氧化碳、氢气、氮气及甲烷等混合气体的过程。

煤或焦炭气化因采用不同的气化剂,可以生产出下列几种不同用途的工业煤气:

①空气煤气。

以空气作为气化剂所制得的煤气。

②水煤气。

以水蒸气作为气化剂所制得的煤气。

③混合煤气。

以空气和适量水蒸气的混合物作气化剂所制得的煤气。

④半水煤气。

分别以空气和水蒸气作气化剂,然后将分别制得的空气煤气和水煤气,两者按混合后气体中(CO+H2)和N2的摩尔比为3.1~3.2的比例进行掺配,这种混合煤气称为半水煤气。

目前,工业上固体燃料为原料制取合成氨原料气的方法,根据气化方式不同,主要有固定床间歇气化法、固定床连续气化法、沸腾床连续气化法和气流床连续气化法。

1.固定床间歇气化法

固定床间歇气化过程是先将空气送入煤气发生炉燃烧燃料,放出热量,提高燃料层温度,以供气化所需(因此,固定床间歇气化法也称蓄热法),生成的吹风气经回收热量后大部分放空。

然后将蒸汽送入炉和碳层进行气化反应,生成水煤气。

由于气化反应是吸热反应,使燃料层温度下降,故需重新通入空气以提高炉温,如此重复交替进行,制得半水煤气。

工业上在间歇气化过程中,将自上一次开始送入空气至下一次再送入空气时为止,称为一个工作循环,间歇式制半水煤气的工作循环。

每个工作循环包括下列五个阶段。

①吹风阶段。

空气从炉底吹入,自下而上以提高煤层温度,然后将吹风气经回收热量后放空。

②蒸汽一次上吹。

水蒸气自下而上送入煤层进行气化反应,此时煤层下部温度下降,而上部温度升高,被煤气带走的显热增加。

③蒸汽下吹。

水蒸气自上而下吹入煤层继续进行气化反应。

使煤层温度趋于均匀。

制得煤气从炉底引出系统。

④蒸汽二次上吹。

蒸汽下吹制气后煤层温度已显著下降,且炉内尚有煤气,如立即吹入空气势必引起爆炸。

为此,先以蒸汽进行二次上吹,将炉子底部煤气排净,为下一步吹风创造条件。

⑤空气吹净。

目的是回收存在炉子上部及管道中残余的煤气,此部分吹风气应加以回收,作为半水煤气中N2的来源。

以常压固定床间歇式气化煤气制取工艺对煤种要求苛刻,仅适用优质无烟煤和冶金焦,而且产气量低、总能耗高。

2.气流床连续气化法

即德士古造气技术,德士古煤气化炉为直立圆筒形结构,分为上中下三部分,上部为反应室,中部为激冷室或废热锅炉,下部为灰渣锁斗。

为了降低水煤浆的粘度,易于输送,将直径小于l0mm的煤磨碎,按比例加入水量。

由于我国煤的灰熔点普遍偏高,为使其灰熔点能降至1350~1365℃以下,加入适量的添加剂和助熔剂,而后将煤水混合物充分湿磨后,送至振动筛,除去大煤粒和机械杂质,即可制成70%的水煤浆,用高压泵将其送入烧嘴,同时将来自空分的高压氧也送入烧嘴,二者充分混合,一起由烧嘴喷入气化炉中。

在1350~1400℃温度下进行气化反应,生成的高温煤气经气化炉底部的激冷室激冷或废热锅炉冷却回收热量后,煤气送往CO变换工序。

熔渣冷却固化后进入破渣机破碎后进入锁斗,定期排入渣池,由捞渣机捞出装车外运。

2.2.2烃类蒸气转化法

烃类蒸气转化系将烃类和蒸汽的混合物流经管式炉管内催化剂床层,管外加燃料供热,使管内大部分烃类转化为H2、CO和CO2。

然后将此高温(850~860℃)气体送入二段炉。

此处送入合成氨原料气所需的加N2空气,以便转化气氧化并升温至1000℃左右,使CH4的残余含量降至约0.3%,从而制得合格的原料气。

烃类主要是天然气、石脑油和重油。

重油一般采用部分氧化法,天然气和石脑油一般采用蒸汽转化法。

天然气的主要成分为CH4,以天然气为原料的蒸汽转化反应为:

(1)一段转化反应

在某种条件下可能发生如下反应:

该反应既消耗原料,同时析出的炭黑沉积在催化剂表面,会使催化剂失去活性和破裂,故应尽量避免。

工业上一般通过提高水蒸气含量和选择高性能的催化剂来避免析炭。

(2)二段转化反应

催化剂床层顶部空间燃烧反应:

催化剂床层中进行甲烷转化和变换反应:

烃类蒸气转化反应是吸热的可逆反应,高温对反应平衡和反应速度都有利。

但即使温度在1000℃时,其反应速度仍然很低,因此,需用催化剂来加快反应的进行。

由于烃类蒸气转化过程是在高温下进行的,且存在析炭问题,这样就要求催化剂除具有高活性、高强度外,还要具有较好的热稳定性和抗析炭能力。

镍催化剂是目前工业上常用的催化剂。

烃类蒸气转化法制原料气流程均大同小异,都包括有一、二段转化炉,原料气预热,余热回收和利用。

在一段转化炉,大部分烃类和蒸汽在催化剂作用下转化成H2、CO、C02,接着一段转化气进入二段转化炉,在此加入空气,一部分H2燃烧放出热量,床层温度升至1200~1250℃,继续进行甲烷的转化反应;二段转化炉出口温度约950~1000℃,二段转化目的是降低转化气中残余甲烷含量,使其含量小于0.5%(体积分数)。

烃类蒸气转化法系在加压条件下进行的,随着耐高温、高强度合金钢的研制成功,压力不断提高,目前已达4.5~5.0MPa。

烃类蒸气转化法是以气态烃和石脑油为原料生产合成氨最经济的方法。

具有不用氧气、投资省和能耗低的优点。

以天然气为原料合成氨,在工程投资、能量消耗和生产成本等方面具有显著的优越性。

目前大型合成氨厂多数以天然气为原料。

2.2.3重油部分氧化法

重油是350℃以上馏程的石油炼制产品。

根据炼制方法不同,分为常压重油、减压重油、裂化重油。

重油部分氧化是指重质烃类和氧气进行部分燃烧,由于反应放出的热量,使部分碳氢化合物发生热裂解及裂解产物的转化反应,最终获得以H2和CO为主要组分,并含有少量CO2和CH4(CH4通常在0.5%以下)的合成气。

1.重油部分氧化化学反应

如果氧量充足,则会发生完全燃烧反应:

如果氧量低于完全氧化理论量,则发生部分氧化,放热量少于完全燃烧,反应式为:

当油和氧混合不均匀时,或油滴过大时,处于高温的油会发生烃类热裂解,反应较复杂,这些副反应最终会导致结焦。

所以,渣油部分氧化过程中总是有炭黑生成。

为了降低炭黑和甲烷的生成,以提高原料油的利用率和合成气产率,—般要向反应系统添加水蒸气,因此在渣油部分氧化的同时,还有烃类的水蒸气转化以及焦炭的气化,生成更多的CO和H2。

氧化反应放出的热量正好提供给吸热的转化和气化反应。

渣油中含有的硫、氮等有机化合物反应后生成H2S、NH3、HCN、COS等少量副产物。

最终生成的水煤气中四种主组分CO、H2O、H2、CO2之间存在的平衡关系要由变换反应平衡来决定。

2.工艺流程

重油部分氧化法制取合成气(CO+H2)的工艺流程由四个部分组成:

原料重油和气化剂(氧和蒸汽)的预热;重油的气化;出口高温合成气的热能回收;炭黑清除和回收。

主要按照热能回收方式的不同,图3.2.8为典型的德士古重油部分氧化激冷工艺流程。

原料重油及由空气分离装置来的氧气和水蒸气经预热后进入气化炉燃烧室,油通过喷嘴雾化后,在燃烧室发生剧烈反应,产物气经水洗塔得到合成气。

激冷流程具有以下特点:

工艺流程简单,无废热锅炉,设备紧凑,操作方便,热能利用完全,可比废热锅炉流程在更高的压力下气化。

不足之处是高温热能未能产生高压蒸汽。

此流程若采用高变催化剂,则要求原料油含硫量低,一般规定S<1%,否则需用耐硫变换催化剂。

图3.2.9为典型的谢尔重油部分氧化废热锅炉工艺流程。

原料重油经高压油泵提压后压力升至6.9MPa,预热至260℃左右和预热后的氧气和高压过热蒸汽混合,约310℃的混合气进入喷嘴,进入气化炉进行气化反应,生成含(CO+H2)90%~92%的合成气。

从气化炉出来的高温气体进入火管式废热锅炉回收热量后,温度由1300℃降至350℃,通过炭黑捕集器、洗涤塔将大部分炭黑洗涤和回收后离开气化工序去脱硫装置。

废热锅炉壳程产出10.5MPa蒸汽。

废热锅炉流程具有以下特点:

利用高温热能产出高压蒸汽,使用比较方便灵活,特别是喷嘴所需要的高压蒸汽缺乏汽源时,采用废锅流程自供蒸汽就更为有利;对原料重油含硫量无限制,下游工序可采取先脱硫、后变换的流程。

不足之处是废热锅炉结构复杂,材料及制作要求高,目前工业上气化压力限于6MPa之下。

2.2.4GSP冷激气化

1.工艺流程设计

首先是采用GSP气化工艺将原料煤气化为合成气;然后通过变换和NHD脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;第三步就是甲醇的合成,将原料气加压到5.14Mpa,加温到225℃后输入列管式等温反应器,在XNC-98型催化剂的作用下合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。

然后利用三塔精馏工艺将粗甲醇精制得到精甲醇。

2.GSP工艺简介

GSP工艺技术是20世纪70年代末由GDR(原民主德国)开发并投入商业化运行的大中型煤气化技术。

和其他同类气化技术相比,该技术因采用了气化炉顶干粉加料和反应室周围水冷壁结构,因而在气化炉结构以及工艺流程上有其先进之处。

GSP气化技术的主要特点如下[6]:

(1)采用干粉煤(水份含量<2%)作为气化原料,根据后续化工产品的要求,煤粉可用氮气或一氧化碳输送,故操作十分安全。

由于气化温度高,故对煤种的适应性更为广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可使用,也可以两种煤掺混使用。

对煤的灰熔点的适用范围比其他气化工艺更宽,即使是高水份、高灰分、高硫含量和高灰熔点的煤种也能使用。

(2)气化温度高,一般在1450~1600℃,煤气中甲烷体积分数小于0.1%,(CO+H2)体积分数高达90%以上。

(3)氧耗较低,和水煤浆加压气化工艺相比,氧耗低约15%~20%,可降低配套空分装置投资和运行费用。

(4)气化炉采用水冷壁结构,无耐火材料衬里。

水冷壁设计寿命按25年考虑。

正常使用时维护量很少,运行周期长。

(5)只有一个联合喷嘴(开工喷嘴和生产喷嘴合二为一),喷嘴使用寿命长,为气化装置长周期运行提供了可靠保障。

(6)碳转化率高达99%以上,冷煤气效率高达80%以上。

(7)对环境影响小,气化过程无废气排放。

(8)投资省,粗煤气成本较低。

3.工艺方案的选择

净化工艺包括;变换、脱硫脱碳、硫回收三个部分。

4.变换工艺

以煤为原料制得的粗甲醇原料气必须经过一氧化碳变换工序。

变换工序主要有两个方面的作用:

通过变换调整氢碳比和使有机硫转化为无机硫。

变换工艺主要有:

鲁奇低压甲醇生产中的变换工艺,Tops¢e法甲醇生产中的变换工艺,以及国内的以重油为原料的全气量部分变换工艺。

设计中的变换工艺是一种全新的设计,该工艺采用的是部分气变换。

该工艺的简单流程为:

气化工段来的水煤气首先进入预变换炉,出炉后分为两部分:

一部分进入另一变换炉,变换后经过多次换热和气液分离后去了脱硫系统;另一部分先进入有机硫水解槽脱硫,出来后气体又分为两部分,部分去调节变换炉出口CO含量,部分去发电系统发电。

2.3甲醇合成工艺条件

为了减少副反应,提高收率,除了选择适当的催化剂外,选择适宜的工艺条件也非常重要。

工艺条件主要有温度、压力、空速和原料气组成等。

1.反应温度

反应温度影响反应速度和选择性。

合成甲醇反应是一个可逆放热反应,反应速率随温度的变化有一最大值,此最大值对应的温度即为最适宜反应温度。

最适宜温度和转化深度及催化剂的老化程度也有关。

一般为了使催化剂有较长的寿命,反应初期宜采用较低温度,使用一定时间后再升至适宜温度。

其后随催化剂老化程度的增加,反应温度也需相应提高。

由于合成甲醇是放热反应,反应热必须及时移走,否则易使催化剂温升过高,不仅会导致副反应(主要是高级醇的生成)增加,而且会使催化剂因发生熔结现象使活性下降。

尤其是使用铜基催化剂时,由于其热稳定性较差,严格控制反应温度显得极其重要。

2.反应压力

一氧化碳加氢合成甲醇的主反应和副反应相比,是摩尔数减少最多、而平衡常数最小的反应,因此增加压力对提高甲醇的平衡浓度和加快主反应速率都是有利的。

在铜基催化剂作用下,当空速为300Oh-1时,不同压力下甲醇生成量的关系如图11.3.1所示

由图可以看出,反应压力越高,甲醇生成量越多。

但是增加压力要消耗能量,而且还受设备强度限制,因此需要综合各项因素确定合理的操作压力。

用ZnO-Cr203催化剂时,反应温度高,由于受平衡限制,必须采用高压,以提高其推动力。

而采用铜基催化剂时,由于其活性高,反应温度较低,反应压力也可相应降至5~lOMPa。

在生产规模大时,压力太低也会影响经济效果,一般采用10MPa左右,较为适宜。

3.原料气组成

甲醇合成反应原料气的化学计量比为H2:

CO=2:

1。

一氧化碳含量高,不仅对温度控制不利,而且也会引起羰基铁在催化剂上的积聚,使催化剂失去活性,故一般采用氢过量。

氢过量可以抑制高级醇、高级烃和还原性物质的生成,提高粗甲醇的浓度和纯度。

同时,过量的氢可以起到稀释作用,且因氢的导热性能好,有利于防止局部过热和控制整个催化剂床层的温度。

原料气中氢气和一氧化碳的比例对一氧化碳生成甲醇的转化率也有较大影响,其影响关系如图11.3.2所示。

从图中可以看出,增加氢的浓度,可以提高一氧化碳的转化率。

但是,氢过量太多会降低反应设备的生产能力。

工业生产上采用铜基催化剂的低压法甲醇合成,一般控制氢气和一氧化碳的摩尔比为(2.2~3.0):

1。

由于二氧化碳的比热容较一氧化碳为高,其加氢反应热效应却较小,故原料气中有一定二氧化碳含量时,可以降低反应峰值温度。

对于

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2