外文资料翻译空冷热交换器和空冷塔.docx

上传人:b****2 文档编号:3220219 上传时间:2023-05-05 格式:DOCX 页数:50 大小:2.74MB
下载 相关 举报
外文资料翻译空冷热交换器和空冷塔.docx_第1页
第1页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第2页
第2页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第3页
第3页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第4页
第4页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第5页
第5页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第6页
第6页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第7页
第7页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第8页
第8页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第9页
第9页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第10页
第10页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第11页
第11页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第12页
第12页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第13页
第13页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第14页
第14页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第15页
第15页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第16页
第16页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第17页
第17页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第18页
第18页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第19页
第19页 / 共50页
外文资料翻译空冷热交换器和空冷塔.docx_第20页
第20页 / 共50页
亲,该文档总共50页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

外文资料翻译空冷热交换器和空冷塔.docx

《外文资料翻译空冷热交换器和空冷塔.docx》由会员分享,可在线阅读,更多相关《外文资料翻译空冷热交换器和空冷塔.docx(50页珍藏版)》请在冰点文库上搜索。

外文资料翻译空冷热交换器和空冷塔.docx

外文资料翻译空冷热交换器和空冷塔

中文5600字

学校代码:

学号:

本科毕业论文

外文翻译

 

题目:

空冷热交换器和空冷塔

 

二〇一三年五月

Air-cooledHeatExchangersandCoolingTowers

D.G.KROGERSc.D.(MIT)

(ThistextisapartofMRKROGER'sbook.include8.4,9.3,9.4)

8.4RECIRCULATION

Heatedplumeairmayrecirculateinanair-cooledheatexchanger,therebyreducingthecoolingeffectivenessofthesystem.Figure8.4.1depicts,schematically,across-sectionofanair-cooledheatexchanger.Intheabsenceofwind,thebuoyantjetorplumerisesverticallyabovetheheatexchanger.Apartofthewarmplumeairmayhoweverbedrawnbackintotheinletofthetower.Thisphenomenonisknownas"recirculation".Plumerecirculationisusuallyavariablephenomenoninfluencedbymanyfactors,includingheatexchangerconfigurationandorientation,surroundingstructuresandprevailingweatherconditions.Becauseofhigherdischargevelocities,recirculationisusuallylessininduceddraftthaninforceddraftdesigns.

 

Figure8.4.1:

Air-flowpatternaboutforceddraftair-cooledheatexchanger.

Lichtenstein[51LI1]definesarecirculationfactoras

(8.4.1)

wheremristherecirculatingairmassflowrate,whilemaistheambientairflowrateintotheheatexchanger.

Althoughtheresultsofnumerousstudiesonrecirculationdoappearintheliterature,mostareexperimentalinvestigationsperformedonheatexchangershavingspecificgeometriesandoperatingunderprescribedconditionse.g.[74KE1,81SL1].GunterandShipes[72GUlldefinecertainrecirculationflowlimitsandpresenttheresultsoffieldtestsperformedonair-cooledheatexchangers.Problemsassociatedwithsolvingrecirculatingflowpatternsnumericallyhavebeenreported[81EP1].Krogeretal.investigatedtheproblemanalytically,experimentallyandnumericallyandrecommendaspecificequationwithwhichtheperformanceeffectivenessofessentiallytwo-dimensionalmechanicaldraftheatexchangersexperiencingrecirculation,canbepredicted[88KR1,89KR1,91DU1,93DU1,95DU1].

8.4.1RECIRCULATIONANALYSIS

Consideronehalfofatwo-dimensionalmechanicaldraftair-cooledheatexchangerinwhichrecirculationoccurs.Forpurposesofanalysis,theheatexchangerisrepresentedbyastraightlineatanelevationHiabovegroundlevelasshowninfigure8.4.2(a).

Figure8.4.2:

Flowpatternaboutheatexchanger.

Itisassumedthatthevelocityoftheairenteringtheheatexchangeralongitsperipheryisinthehorizontaldirectionandhasameanvalue,vi(theactualinletvelocityishighestattheedgeofthefanplatformanddecreasestowardsgroundlevel).Theoutletvelocity,vo,isassumedtobeuniformandintheverticaldirection.

Considertheparticularstreamlineattheoutletoftheheatexchangerthatdivergesfromtheplumeat1andformstheouter"boundary"oftherecirculatingairstream.Thisstreamlinewillentertheplatformat2,somedistanceHrbelowtheheatexchanger.Forpurposesofanalysisitwillbeassumedthattheelevationof1isapproximatelyHrabovetheheatexchanger.Ifviscouseffects,mixingandheattransfertotheambientairareneglected,Bernoulli'sequationcanbeappliedbetween1and2togive

(8.4.2)

ItisreasonabletoassumethatthetotalpressureatIisapproximatelyequaltothestagnationpressureoftheambientairatthatelevationi.e.

(8.4.3)

At2thestaticpressurecanbeexpressedas

(8.4.4)

Furthermore,fortheambientairfarfromtheheatexchanger

(8.4.5)

Substituteequations(8.4.3),(8.4.4)and(8.4.5)intoequation(8.4.2)andfind

(8.4.6)

DuetoviscouseffectsthevelocityattheinletatelevationHiisinpracticeequaltozero.TheVelocitygradientinthisimmediateregionishoweververysteepandthevelocitypeaksatavaluethatishigherthanthemeaninletvelocity.Examplesofnumericallydeterminedinletvelocitydistributionsfordifferentoutletvelocitiesandheatexchangergeometriesareshowninfigure8.4.3[95DU1].Sincemostoftherecirculationoccursinthisregionthevelocityv2isofimportancebutdifficulttoquantifyanalytically.For

itwillbeassumedthatv2canbereplacedapproximatelybythemeaninletvelocity,vi,inequation(8.4.6).Thus

(8.4.7)

Figure8.4.3:

Two-dimensionalinletvelocitydistributionforWi/2=5.1m.

Accordingtotheequationofmassconservation,theflowperunitdepthofthetowercanbeexpressedas

(8.4.8)

iftheamountofrecirculationissmall.

Accordingtoequations(8.4.1)and(8.4.8)therecirculationfactoris

(8.4.9)

Substituteequations(8.4.7)and(8.4.8)intoequation(8.4.9)andfind

(8.4.10)

where

istheFroudenumberbasedonthewidthoftheheatexchanger.

Theinfluenceofawindwallordeepplenumcanbedeterminedapproximatelybyconsideringflowconditionsbetweenthetopofthewindwall,(Hi+Hw),asshowninfigure8.4.2(b)andelevationHi.ConsidertheextremecasewhenHwissolarge(Hw=Hwo)thatnorecirculationtakesplaceandtheambientairvelocitynearthetopofthewindwalliszero.Inthisparticularcasethestaticpressureatthetowerexitisessentiallyequaltotheambientstagnationpressure.Withtheseassumptions,applyBernoulli'sequationbetweenthetoweroutletatthetopofthewindwallandtheelevationHi.

(8.4.11)

But

(8.4.12)

Substituteequation(8.4.12)intoequation(8.4.11)andfind

(8.4.13)

Ifitisassumedthattherecirculationdecreasesapproximatelylinearlywithincreasingwindwallheight,equation(8,4.10)maybeextendedasfollows:

(8.4.14)

SincetherecirculationisassumedtobeessentiallyzeroatHw=Hwo,finda=1.

Substituteequation(8.4.13)intoequation(8.4.14)andfind

(8.4.15)

where

isthedensimetricFroudenumberbasedonthewindwallheight.

Itisimportanttodeterminetheeffectivenessofthesystemwhenrecirculationoccurs.Effectivenessinthiscase,isdefinedas

(8.4.16)

Theinterrelationbetweentherecirculationandtheeffectivenessiscomplexinarealheatexchanger.Twoextremescanhoweverbeevaluatedanalyticallyi.e.

1.Nomixing

Thewarmrecirculatingairdoesnotmixatallwiththecoldambientinflow,resultinginatemperaturedistributionasshowninfigure8.4.4(a).Therecirculatingstreamassumesthetemperatureoftheheatexchangerfluid

.

Figure8.4.4:

Recirculationflowpatterns.

Thisineffectmeansthatthepartoftheheatexchangerwhererecirculationoccurs,transfersnoheat.Theactualheattransferrateisthusgivenby

(8.4.17)

resultinginaneffectivenessduetorecirculationof

(8.4.18)

Substituteequation(8.4.15)intoequation(8.4.18)andfind

(8.4.19)

2.Perfectmixing

Therecirculatingairmixesperfectlywiththeinflowingambientair,resultinginauniformincreaseinboththeeffectiveinletairtemperatureandtheoutletairtemperatureasshowninfigure8.4.4(b).

Ifforpurposeofillustration,itisassumedthatthetemperatureoftheheatexchanger,

isconstant,itfollowsfromequation(3.5.22)thattheeffectivenessundercross-flowconditionsis

(8.4.20)

or

(8.4.21)

Furthermoretheenthalpyenteringtheheatexchangeris

or

(8.4.22)

Substituteequation(8.4.22)intoequation(8.4.21)andfind

(8.4.23)

Inthiscasetheeffectivenessduetorecircuiationisgivenby

Fromequation(8.4.22)and(8.4.23),substitutethevaluesofTirandTorintothisequation,tofindtheeffectivenessoftheheatexchanger.

(8.4.24)

Inpracticetheeffectivenesswillbesomevaluebetweenthatgivenbyequation(8.4.18)andequation(8.4.24).Actualmeasurementsconductedonair-cooledheatexchangersappeartosuggestthatrelativelylittlemixingoccurs.Thistendencyisconfirmedbynumericalanalysisoftheproblem[89KR1,95DU1].

Figure8.4.5:

Heatexchangereffectiveness.

DuvenhageandKroger[95DU1]solvedtherecirculationproblemnumericallyandcorrelatedtheirresultsoverawiderangeofoperatingconditionsandheatexchangergeometriesbymeansofthefollowingempiricalequation:

(8.4.25)

Thisequationisvalidinthe

and

where

.Inthisequation

representstheeffectiveheightabovetheinlettothefanplatformandincludestheplenumheightinadditiontoanywindwallheight.

Equation(8.4.25)isshowngraphicallyinfigure8.4.5.Forvaluesof

equation(8.4.19)isingoodagreementwithequation(8.4.25).

8.4.2MEASURINGRECIRCULATION

Intheabsenceofwindwalls,recirculationcanbesignificantresultinginacorrespondingreductioninheattransfereffectiveness.Asshowninfigure8.4.6,smokegeneratedatthelowerendoutletofanA-frametypeforceddraftair-cooledheatexchangerwithoutwindwalls,isdrawndirectlydownwardsintothelowpressureregioncreatedbythefans.TheresultsofrecirculationtestsconductedattheMarimbapowerplantarereportedbyConradieandKroger[89CO1].Theyactuallymeasuredtheverticaltemperaturedistributionoftheairenteringtheheatexchangerandobservedarelativelyhighertemperatureinthevicinityofthefanplatform.Asshownbythesmoketrailinfigure8.4.7recirculationoftheplumeairoccursinthisregionBecauseoftheapproximately10mhighwindwallsurroundingthearrayofA-frameheatexchangerbundles,areductionineffectivenessoflessthatonepercentisexperiencedundernormaloperatingconditionsintheabsenceofwind.Theeffectivenesscanbedeterminedaccordingtoequation(8.4.25).

 

Figure8.4.6:

Plumeairrecirculatinginair-cooledsteamcondenser.

Figure8.4.7:

VisualizationofrecirculationwithsmokeattheMatimbapowerplant.

Generallylessrecirculationoccursininduceddraftcoolingsystemsduetotherelativelyhighfanoutletvelocityandheightofd

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2