被动人体红外传感器电路图.docx

上传人:b****1 文档编号:3276017 上传时间:2023-05-05 格式:DOCX 页数:10 大小:261.85KB
下载 相关 举报
被动人体红外传感器电路图.docx_第1页
第1页 / 共10页
被动人体红外传感器电路图.docx_第2页
第2页 / 共10页
被动人体红外传感器电路图.docx_第3页
第3页 / 共10页
被动人体红外传感器电路图.docx_第4页
第4页 / 共10页
被动人体红外传感器电路图.docx_第5页
第5页 / 共10页
被动人体红外传感器电路图.docx_第6页
第6页 / 共10页
被动人体红外传感器电路图.docx_第7页
第7页 / 共10页
被动人体红外传感器电路图.docx_第8页
第8页 / 共10页
被动人体红外传感器电路图.docx_第9页
第9页 / 共10页
被动人体红外传感器电路图.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

被动人体红外传感器电路图.docx

《被动人体红外传感器电路图.docx》由会员分享,可在线阅读,更多相关《被动人体红外传感器电路图.docx(10页珍藏版)》请在冰点文库上搜索。

被动人体红外传感器电路图.docx

被动人体红外传感器电路图

被动人体红外传感器电路图

 

  被动红外传感器的电路也有好多,但是不管什么形式的,差不多都是上面的样子,有的可能会少一级放大。

这里的一款电路是我从尼赛拉厂家那里得到的,很经典的使用方法。

前面是一级低频信号放大,放大倍数大约是100倍,放大后信号通过R6、C5再次选出0.2-10HZ的信号,最后送到IC1B进行再次放大,运放的5脚是1/2VCC电压脚,在静态时,6、7脚的电压也是1/2VCC,当有信号后,6脚就会有一个在1/2VCC电压附近上下摆动的电压值,这个电压通过运放进一步放大后,输入到后面的门限比较电路,该门限电路不管你输入信号是在1/2VCC电压上偏还是下偏,都将在超过门限值后在二极管4148的负极输出一个高电平信号。

这里,RP1和RP2都可以调检测的灵敏度,一般RP2可以用一个220K的电阻代替,只要调节RP1就可以了。

这里,我顺便说一下运放的使用吧,好多的同志在论坛上经常要发表关于运放是单电源供电还是双电源供电,其实,任何一个运放都可以用单电源或者双电源供电的,这里是典型的单电源供电的方法,最典型的地方是IC1B的5脚电压来自与电源和地之间2个100K电阻R9、R10的分压,然后一个电容到地滤波,如果是双电源供电的话,这个部分一般会接地线,好了,题外话我不多说了,红外感应头自己到

基于LM324的被动式人体红外线感应开关

上传者:

葱爆羊肉  浏览次数:

11881

 

 

  红外报警开关采用国内外最流行的PIR人体热释电传感器作信号探测器,灵敏度高,探测距离可达10米以上,其俯视角可达86°,水平视角可达120°。

因它仅对人体释放的、特定波长的红外光最敏感,因而误动作极小。

  当有人在其探测区域内以0.3~3Hz的频率活动时,PIR探头就能感生出微弱的电信号,经U1-1、U1-2两级放大后,从U1(7)脚输出0.5~5.5V的强信号。

  D4、D5、R12~R15及U1-3组成双门限比较器,因PIR感生的信号电压可正可负,故U1(7)脚输出的电压亦可正可负(对中心电压3V而言)。

当其输出的电压达到4.1V以上时,通过D4施加于U1(10)脚的电压高于(9)脚的电压(3.3V),使U1(8)脚输出高电位;而当U1(7)脚输出的电位低于2V时,则U1(9)脚的电压将通过D2下降至2.7V以下,U1(8)脚也输出高电位。

  平时无信号时,由于U1(9)脚的电位3.3V高于(10)脚(2.7V),故(8)脚无输出。

当PIR接收到信号时,(8)脚就一定输出高电位,通过D6、R17给C9充电,使U1(12)脚电位高于(13)脚,其(14)脚输出高电位触发双向可控硅导通,点亮电灯。

  由于C8所储电能通过R19、RW2放电需时约2分钟,故在此2分钟内灯一直亮着。

当C9上的电压低于(13)脚电压(1V)时,(14)脚无输出,可控硅关闭,灯自动熄灭。

  光敏电阻CDS及三极管Q1等组成光控电路,白天因光敏电阻的阻值很小(10KΩ以下),三极管Q1饱和导通,将U1(8)脚钳位至0.3V左右,故无论有无感应信号,可控硅均不能导通,灯不能点亮;到了夜晚,因光敏电阻的阻值变大到几兆欧,三极管Q1截止,U1(8)脚不再受其钳位,一旦PIR接收到信号,(8)脚就立即输出高电平,使可控硅导通,将灯点亮。

 

菲涅尔镜片的原理和应用

  

    菲涅尔镜片是红外线探头的“眼镜”,它就象人的眼镜一样,配用得当与否直接影响到使用的功效,配用不当产生误动作和漏动作,致使用户或者开发者对其失去信心。

配用得当充分发挥人体感应的作用,使其应用领域不断扩大。

    菲涅尔镜片是根据法国光物理学家FRESNEL发明的原理采用电镀模具工艺和PE(聚乙烯)材料压制而成。

镜片(0.5mm厚)表面刻录了一圈圈由小到大,向外由浅至深的同心圆,从剖面看似锯齿。

圆环线多而密感应角度大,焦距远;圆环线刻录的深感应距离远,焦距近。

红外光线越是靠进同心环光线越集中而且越强。

同一行的数个同心环组成一个垂直感应区,同心环之间组成一个水平感应段。

垂直感应区越多垂直感应角度越大;镜片越长感应段越多水平感应角度就越大。

区段数量多被感应人体移动幅度就小,区段数量少被感应人体移动幅度就要大。

不同区的同心圆之间相互交错,减少区段之间的盲区。

区与区之间,段与段之间,区段之间形成盲区。

由于镜片受到红外探头视场角度的制约,垂直和水平感应角度有限,镜片面积也有限。

镜片从外观分类为:

长形、方形、圆形,从功能分类为:

单区多段、双区多段、多区多段。

红外热释电处理芯片BISS0001

管脚图

 

管脚说明

引脚

名称

I/O

功能说明

1

A

I

可重复触发和不可重复触发选择端。

当A为“1”时,允许重复触发;反之,不可重复触发

2

VO

O

控制信号输出端。

由VS的上跳变沿触发,使Vo输出从低电平跳变到高电平时视为有效触发。

在输出延迟时间Tx之外和无VS的上跳变时,Vo保持低电平状态。

3

RR1

--

输出延迟时间Tx的调节端

4

RC1

--

输出延迟时间Tx的调节端

5

RC2

--

触发封锁时间Ti的调节端

6

RR2

--

触发封锁时间Ti的调节端

7

VSS

--

工作电源负端

8

VRF

I

参考电压及复位输入端。

通常接VDD,当接“0”时可使定时器复位

9

VC

I

触发禁止端。

当VcVR时允许触发(VR≈0.2VDD)

10

IB

--

运算放大器偏置电流设置端

11

VDD

--

工作电源正端

12

2OUT

O

第二级运算放大器的输出端

13

2IN-

I

第二级运算放大器的反相输入端

14

1IN+

I

第一级运算放大器的同相输入端

15

1IN-

I

第一级运算放大器的反相输入端

16

1OUT

O

第一级运算放大器的输出端

工作原理

    BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。

    以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。

不可重复触发工作方式下的波形

    首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。

然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。

由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。

COP3是一个条件比较器。

当输入电压VcVR时,COP3输出为高电平,进入延时周期。

当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。

当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。

在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。

    以下图所示的可重复触发工作方式下的波形,来说明其工作过程。

可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。

在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内一直保持有效状态。

在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。

应用线路图

BISS0001的热释电红外开关应用电路图

    上图中,运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信号Vo经晶体管T1放大驱动继电器去接通负载。

    上图中,R3为光敏电阻,用来检测环境照度。

当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。

SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。

图中R6可以调节放大器增益的大小,原厂图纸选10K,实际使用时可以用3K,可以提高电路增益改善电路性能。

输出延迟时间Tx由外部的R9和C7的大小调整,触发封锁时间Ti由外部的R10和C6的大小调整,R9/R10可以用470欧姆,C6/C7可以选0.1U。

相关键连:

菲涅尔镜片的原理和应用

    说明该传感器采用热释电材料极化随温度变化的特性探测红外辐射,采用双灵敏元互补方法抑制温度变化产生的干扰,提高了传感器的工作稳定性。

1、上述特性指标是在源极电阻R2=47KΩ条件下测定的,用户使用传感器时,可根据自己的需要调整R2的大小。

2、注意灵敏元的位置及视场大小,以便得到最佳光学设计。

3、所有电压信号的测量都是采用峰一峰值定标。

平衡度B中的EA和EB分别表示两个灵敏元的电压输出信号的峰一峰值。

4、使用传感时,管脚的弯曲或焊接部位应离开管脚基部4mm以上。

5、使用传感器前,应先参考说明书,尤其要防止接错管脚

 

人体红外遥感灯电路图

时间:

2008-09-1510:

17:

11

  如图所示为人体红外遥感灯的电路。

它是利用人体发出的微量红外线热量对电灯的开启和关闭实施遥控的。

这种人体遥感灯的触发灵敏度很高(在lOm远处即可工作),抗干扰能力强,真正实现了全自动化。

 

 工作原理字串6该装置电路原理见图1。

由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。

红外线探测传感器IC1探测到前方人体辐射出的红外线信号时,由IC1的②脚输出微弱的电信号,经三极管VT1等组成第一级放大电路放大,再通过C2输入到运算放大器IC2中进行高增益、低噪声放大,此时由IC2①脚输出的信号已足够强。

IC3作电压比较器,它的第⑤脚由R10、VD1提供基准电压,当IC2①脚输出的信号电压到达IC3的⑥脚时,两个输入端的电压进行比较,此时IC3的⑦脚由原来的高电平变为低电平。

IC4为报警延时电路,R14和C6组成延时电路,其时间约为1分钟。

当IC3的⑦脚变为低电平时,C6通过VD2放电,此时IC4的②脚变为低电平,它与IC4的③脚基准电压进行比较,当它低于其基准电压时,IC4的①脚变为高电平,VT2导通,讯响器BL通电发出报警声。

人体的红外线信号消失后,IC3的⑦脚又恢复高电平输出,此时VD2截止。

由于C6两端的电压不能突变,故通过R14向C6缓慢充电,当C6两端的电压高于其基准电压时,IC4的①脚才变为低电平,时间约为1分钟,即持续1分钟报警。

  由VT3、R20、C8组成开机延时电路,时间也约为1分钟,它的设置主要是防止使用者开机后立即报警,好让使用者有足够的时间离开监视现场,同时可防止停电后又来电时产生误报。

字串4该装置采用9-12V直流电源供电,由T降压,全桥U整流,C10滤波,检测电路采用IC578L06供电。

本装置交直流两用,自动无间断转换。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2