微机总线和接口标准Word文档下载推荐.docx

上传人:b****2 文档编号:3312747 上传时间:2023-05-01 格式:DOCX 页数:22 大小:35.24KB
下载 相关 举报
微机总线和接口标准Word文档下载推荐.docx_第1页
第1页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第2页
第2页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第3页
第3页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第4页
第4页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第5页
第5页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第6页
第6页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第7页
第7页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第8页
第8页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第9页
第9页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第10页
第10页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第11页
第11页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第12页
第12页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第13页
第13页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第14页
第14页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第15页
第15页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第16页
第16页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第17页
第17页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第18页
第18页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第19页
第19页 / 共22页
微机总线和接口标准Word文档下载推荐.docx_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

微机总线和接口标准Word文档下载推荐.docx

《微机总线和接口标准Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《微机总线和接口标准Word文档下载推荐.docx(22页珍藏版)》请在冰点文库上搜索。

微机总线和接口标准Word文档下载推荐.docx

Bus),把片外总线叫做外部总线或外总线(ExternalBus)。

CPU通过总线实现程序取指令、内存/外设的数据交换,在CPU与外设一定的情况下,总线速度是制约计算机整体性能的最大因素。

2.按总线的功能可分为:

地址总线

数据总线

控制总线

通常所说的总线都包括上述三个组成部分,地址总线(ABus)用来传送地址信息,数据总线(DBus)用来传送数据信息,控制总线(CBus)用来传送各种控制信号。

例如ISA总线共有98条线(即ISA插槽有98个引脚);

其中数据线有16条(构成数据总线),地址线24条(构成地址总线),其余各条为控制信号线(构成控制总线)、接地线和电源线。

3.按总线的层次结构可分为:

CPU总线:

包括地址线(CAB)、数据线(CDB)和控制线(CCD),它用来连接CPU和控制芯片。

存贮总线:

包括地址线(MAB)、数据线(MDB)和控制线(MCD),用来连接存储控制器和DRAM。

系统总线:

也称为I/O通道总线,包括地址线(SAB)、数据线(SDB)和控制线(SCB),用来与扩充插槽上的各扩充板卡相连接。

系统总线有多种标准,以适用于各种系统。

外部总线:

用来连接外设控制芯片,如主机板上的I/O控制器和键盘控制器。

包括地址线(XAB)、数据线(XDB)和控制线(XCB)。

CPU总线、存储总线、外部总线在系统板上,不同的系统采用不同的芯片集。

这些总线不完全相同,也不存在互换性问题。

系统总线是与I/O扩充插槽相连的,I/O插槽中可插入各式各样的扩充板卡,作为各种外设的适配器与外设连接。

系统总线必须有统一的标准,以便按照这些标准设计各类适配卡。

因此,我们实际上要讨论的总线就是系统总线,各种总线标准也主要是指系统总线的标准。

4.按总线在微机系统中的位置可分为:

机内总线:

上面介绍的各类都是机内总线。

机外总线(PeripheralBus—外设总线):

指与外部设备接口的总线,实际上是一种外设的接口标准。

目前在PC机上流行的接口标准有:

IDE、SCSI、USB和IEEE1394四种。

前两种主要是与硬盘、光驱等IDE设备接口,后面两种新型外部总线可以用来连接多种外部设备。

5.系统总线

上面说过,我们要讨论的总线主要是系统总线。

PC机上的系统总线又可分为ISA、EISA、MCA、VESA、PCI、AGP等多种标准。

ISA(IndustryStandardArchitecture)是IBM公司为286/AT电脑制定的总线工业标准。

也称为AT标准。

MCA(MicroChannel 

Architecture),是IBM公司专为其PS/2系统开发的微通道总线结构。

由于执行的是使用许可证制度,因此未能得到有效推广。

EISA(ExtendedIndustryStandard 

Architecture),是EISA集团(1988年由Compaq、HP、AST、NEC、Olivetti、Zenith、Tandy等组成)为32位CPU设计的总线扩展工业标准。

VESA(VideoElectronicsStandards 

Association),是VESA组织(1992年由IBM、Compaq等发起,有120多家公司参加)按Local 

Bus(局部总线)标准设计的一种开放性总线。

PCI(PeripheralComponentInterconnect),是SIG(SpecialInterest 

Group)集团推出的总线结构。

1992年起,先后有Intel、HP、IBM、Apple、DEC、Compaq、NEC等著名的厂商加盟重新组建。

AGP(AcceleratedGraphics 

Port)即加速图形端口。

它是一种为了提高视频带宽而设计的总线规范。

因为它是点对点连接,即连接控制芯片和AGP显示卡,因此严格说来,AGP也是一种接口标准。

6.局部总线

在以Windows为代表的图形用户接口(GUI)进入PC机之后,要求有高速的图形描绘能力和I/O处理能力。

这不仅要求图形适配卡要改善其性能,也对总线的速度提出了挑战。

实际上当时外设的速度已有了很大的提高,如硬磁盘与控制器之间的数据传输率已达10MB/s以上,图形控制器和显示器之间的数据传输率也达到69MB/s。

通常认为I/O总线的速度应为外设速度的3~5倍。

因此原有的ISA、EISA已远远不能适应要求,而成为整个系统的主要瓶颈。

局部总线是PC体系结构的重大发展。

它打破了数据I/O的瓶颈,使高性能CPU的功能得以充分发挥。

从结构上看,所谓局部总线是在ISA总线和CPU总线之间增加的一级总线或管理层。

这样可将一些高速外设,如图形卡、硬盘控制器等从ISA总线上卸下而通过局部总线直接挂接到CPU总线上,使之与高速的CPU总线相匹配。

局部总线可分为三种:

专用局部总线

VL总线(VESALocalBus)。

PCI总线(PeripheralComponentInterconnect)。

专用局部总线是一些大公司,如NEC、Dell、HP等,为自己系统开发的专用总线,用于图形处理、网络传输等。

它们是非标准的,不能通用,也不被广大兼容机采用。

VL总线和PCI总线都是通用总线,但VL总线只是适用于486的一种过渡标准,目前已经淘汰。

586以上档次的微机普遍采用PCI总线。

总线的主要参数

1.总线的带宽

总线的带宽指的是一定时间内总线上可传送的数据量,即我们常说的每秒钟传送多少MB的最大稳态数据传输率。

与总线带宽密切相关的两个概念是总线的位宽和总线的工作时钟频率。

2.总线的位宽

总线的位宽指的是总线能同时传送的数据位数,即我们常说的32位、64位等总线宽度的概念。

总线的位宽越宽则总线每秒数据传输率越大,也即总线带宽越宽。

3.总线的工作时钟频率

总线的工作时钟频率以MHz为单位,工作频率越高则总线工作速度越快,也即总线带宽越宽。

总线带宽、总线位宽、总线工作时钟频率的关系举个例子就很容易明白了。

高速公路上的车流量取决于公路车道的数目和车辆行驶速度,车道越多、车速越快则车流量越大;

总线带宽就象是高速公路的车流量,总线位宽仿佛高速公路上的车道数,总线时钟工作频率相当于车速,总线位宽越宽、总线工作时钟频率越高则总线带宽越大。

当然,单方面提高总线的位宽或工作时钟频率都只能部分提高总线的带宽,并容易达到各自的极限。

只有两者配合才能使总线的带宽得到更大的提升。

ISA总线

一、概述

最早的PC总线是IBM公司于1981年推出的基于8位机PC/XT的总线,称为PC总线。

1984年IBM公司推出了16位PC机PC/AT,其总线称为AT总线。

然而IBM公司从未公布过他们的AT总线规格。

为了能够合理地开发外插接口卡,由Intel公司,IEEE和EISA集团联合开发了与IBM/AT原装机总线意义相近的ISA总线,即8/16位的“工业标准结构”(ISA-Industry 

StandardArchitecture)总线。

二、ISA总线的主要特点和性能指标

8位ISA扩展I/O插槽由62个引脚组成,用于8位的插卡;

8/16位的扩展插槽除了具有一个8位62线的连接器外,还有一个附加的36线连接器,这种扩展I/O插槽既可支持8位的插卡,也可支持16位插卡。

ISA总线的主要性能指标如下:

 

I/O地址空间0100H-03FFH

24位地址线可直接寻址的内存容量为16MB

8/16位数据线

62+36引脚

最大位宽16位(bit)

最高时钟频率8MHz

最大稳态传输率16MB/s

中断功能

DMA通道功能

开放式总线结构,允许多个CPU共享系统资源 

ISA插槽如图2所示。

A1-A31及B1-B31的62线插槽即为8位插卡插槽,它与PC/XT 

8位总线完全兼容。

C1-C18和D1-D18为AT总线增加的36线插槽,它和62线插槽一起供16位插卡使用。

EISA总线

ISA总线对于286和386SX等微机系统来说是方便的,但对于386DX以上档次具有32位地址和数据宽度的微机系统来说,因其数据总线和地址总线宽度不够而影响了32位微处理器性能的发挥。

为此IBM推出了32位微机采用的MCA微通道总线技术,但由于IBM对MCA技术采用了严格的许可证制度,使得其它厂商不能采用,同时MCA与PC/XT/AT总线也不兼容,所以除了在PS/2计算机中采用之外,在其它兼容机中没有得到推广。

为了与MCA总线技术抗衡,Compaq、HP、AST、Epson、NEC、Olivetti、Tandy、Wyse、ZeithData 

System(ZDS)等九家公司联合起来在ISA的基础上于1988年推出了为32位微机设计的“扩展工业标准结构”(ExtendedIndustry 

StandardArchitecture),即EISA总线。

EISA在结构上与ISA有良好的兼容性,保护了厂商和用户巨大的软硬件投资;

同时又充分发挥和利用32位微处理机的功能,使之在图形技术、光存储器、分布处理、网络、数据处理等需要高速处理能力的地方发挥作用。

EISA的推出打破了IBM 

MCA结构对微计算机发展的垄断。

二、EISA的主要特点

EISA插槽既与ISA插卡兼容,又与EISA插卡兼容。

在插EISA卡时使用32位数据线,能达到33MB/s的传输率。

EISA的主要性能指标与ISA相比,有以下优点:

开放式结构。

EISA和ISA兼容,现有的ISA扩充板可以用于EISA总线上

32位地址域直接寻址范围为4GB

32位数据线

最大时钟频率8.3MHz

最大传输率33MB/s

EISA插槽由于要与ISA和EISA插卡兼容,因此在结构上和以往的插槽不同,采用了双层结构,EISA插卡的金手指也是双层结构。

EISA插槽结构和ISA、EISA两种插卡的连接示意图如图3所示。

如图所示,EISA插槽外观上与ISA插槽等长宽高,内部采用双层引脚结构,两层引脚之间由定位键限位。

上层引脚与ISA插卡上的“金手指”对应,引脚为A1-A31、B1-B31、C1-C18和D1-D18。

由于定位键的限位作用,ISA插卡不会与下层引脚相碰。

下层引脚是为EISA卡设计的,与EISA卡上的“金手指”对应。

引脚为E1-E31、F1-F31、G1-G9和H1-H19。

EISA板插入时,插卡上的标准凹口会避开定位键,可插入槽底,使EISA插卡上的“金手指”分别与槽中A、B、C、D、E、F、G、H各组引脚连接,图3表示了ISA插槽插入ISA插卡和EISA插卡的情形。

PCI总线

90年代,随着图形处理技术和多媒体技术的广泛应用,在以Windows为代表的图形用户接口(GUI)进入PC机之后,要求有高速的图形描绘能力和I/O处理能力。

通常认为I/O总线的速度应为外设速度的3-5倍。

因此对总线提出了更高的性能要求,从而促使了总线技术进一步发展。

1991年下半年,Intel公司首先提出了PCI的概念,并联合IBM、Compaq、AST、HP、DEC等100多家公司成立了PCI集团,其英文全称为:

Peripheral 

ComponentInterconnectSpecialInterest 

Group(外围部件互连专业组),简称PCISIG。

PCI是一种先进的局部总线,已成为局部总线的新标准。

PCI总线插槽如图4所示。

二、PCI局部总线的主要性能和特点

PCI总线是一种不依附于某个具体处理器的局部总线。

从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。

管理器提供了信号缓冲,使之能支持10种外设,并能在高时钟频率下保持高性能。

PCI总线也支持总线主控技术,允许智能设备在需要时取得总线控制权,以加速数据传送。

1.PCI总线的主要性能

支持10台外设

总线时钟频率33.3MHz/66MHz

最大数据传输速率133MB/s

时钟同步方式

与CPU及时钟频率无关

总线宽度32位(5V)/64位(3.3V)

能自动识别外设

特别适合与Intel的CPU协同工作

2.其它特点

具有与处理器和存储器子系统完全并行操作的能力

具有隐含的中央仲裁系统

采用多路复用方式(地址线和数据线)减少了引脚数

支持64位寻址

完全的多总线主控能力 

提供地址和数据的奇偶校验

可以转换5V和3.3V的信号环境 

三、PCI总线信号定义 

要引脚主控设备49条目标设备47条

可选引脚51条(主要用于64位扩展、中断请求、高速缓存支持等)

总引脚数120条(包含电源、地、保留引脚等)

四、PCI总线结构连接方式 

PCI总线的基本连接方式如图5所示。

从图中可以看到CPU总线和PCI总线由桥接电路(习惯上称为北桥芯片)相连。

芯片中除了含有桥接电路外,还有Cache控制器和DRAM控制器等其它控制电路。

PCI总线上挂接高速设备,如图形控制器、IDE设备或SCSI设备、网络控制器等。

PCI总线和ISA/EISA总线之间也通过桥接电路(习惯上称为南桥芯片)相连,ISA/EISA上挂接传统的慢速设备,继承原有的资源。

此外,PCI总线还有其它一些连接方式,如双PCI总线方式、PCITOPCI方式、多处理器服务器方式等。

鉴于篇幅关系不再详细介绍。

五、PCI总线的新发展

当前PCI总线的最高版本是2.1版,虽然在理论上达到66MHz的时钟频率,但对于新型的CPU(如Xeon、Katmai等)和高总线频率主板是完全不能适应的。

Intel推出的新一代PCI总线规范称为PCI-X,主要适用于133MHz总线时钟频率的台式机主板。

此外Intel还准备推出一种称为MINI 

PCI的总线标准。

MINIPCI对原来的PCI总线在控制线路和功能上作了改进,减小了外形尺寸,使之适用于便携式机器。

AGP总线

一、为什么要采用AGP

它支持的AGP插槽可以插入符合该规范的AGP插卡。

其视频信号的传输速率可以从PCI的132MB/s提高到266MB/s(×

1模式)或者532MB/s(×

2模式)。

虽然现在PC机的图形处理能力越来越强,但要完成细致的大型3D图形描绘,PCI结构的性能仍然有限,为了让PC的3D应用能力能同图形工作站一较高低,Intel公司开发了AGP标准,推出AGP的主要目的就是要大幅提高高档PC机的图形尤其是3D图形的处理能力。

严格说来,AGP不能称为总线,因为它是点对点连接,即连接控制芯片和AGP显示卡。

采用AGP的目的是为了使3D图形数据越过PCI总线,直接送入显示子系统。

这样就能突破由PCI总线形成的系统瓶颈。

PCI总线在3D应用中的局限主要表现在3D图形描绘中。

储存在PCI显示卡显示内存中的不仅有影像数据,还有纹理数据(Texture 

Data)、Z轴的距离数据及Alpha变换数据等,特别是纹理数据的信息量相当大。

如果要描绘细致的3D图形,就要求显存容量很大;

再加上必须采用较快速的显存,最终造成显示卡价格高昂。

因此,3D显示卡的制造厂商所期望的是既能增加纹理数据的储存能力,又能降低产品的成本。

一个有效的办法就是将纹理数据从显示内存移到主内存,以便减少显示内存的容量,从而降低显示卡的成本。

从整个系统来看,增加显示内存也不如增加主内存划算,因为用作主内存的DRAM的价格已不太昂贵,而且把纹理数据储存在主内存比储存在显示内存更可有效利用内存。

存储纹理数据所需的内存空间依应用程序而定,也就是说,当应用程序结束后,它所占用的主内存空间又可恢复,纹理数据并不永远占用主内存的空间。

然而遗憾的是,当纹理数据从显示内存移到主内存时,由于纹理数据传输量很大,数据传输的瓶颈就从显示卡上的内存总线转移到了PCI总线上。

例如,显示1024×

768×

16位真彩色的3D图形时,纹理数据的传输速度需要200MB/s以上,但目前的PCI总线最高数据传输速度仅为133MB/s,因而成为系统的主要瓶颈。

3D绘图时所需数据传送速度如下表所示:

AGP在主内存与显示卡之间提供了一条直接的通道。

使得3D图形数据越过PCI总线,直接送入显示子系统。

这样就能突破由于PCI总线形成的系统瓶颈,从而实现了以相对低价格来达到高性能3D图形的描绘功能。

采用AGP总线的系统结构如图6所示。

二、AGP的性能特点

AGP以66MHzPCIRevision2.1规范为基础。

在此基础上扩充了以下主要功能:

1.数据读写操作的流水线操作

流水线(pipelining)操作是AGP提供的仅针对主存的增强协议。

由于采用了流水线操作减少了内存等待时间,数据传输速度有了很大提高。

2.具有133MHz的数据传输频率

AGP使用了32位数据总线和双时钟技术的66MHz时钟。

双时钟技术允许AGP在一个时钟周期内传输双倍的数据,即在工作脉冲波形的两边沿(即上升沿和下降沿)都传输数据,从而达到133MHz的传输速率,即532MB/s(133M×

4B/s)的突发数据传输率。

3.直接内存执行DIME

AGP允许3D纹理数据不存入拥挤的帧缓冲区(即图形控制器内存),而将其存入系统内存,从而让出帧缓冲区和带宽供其它功能使用。

这种允许显示卡直接操作主存的技术称为DIME(Direct 

MemoryExcute)。

应该说明的是,虽然AGP把纹理数据存入主存,也可以称为UMA(UnifiedMemory 

Architecture,统一内存体系结构)技术。

但是与一些低端机采用的UMA有以下两点区别:

通过AGP技术使用的主内存(称为AGPRAM)并没有完全取代显示卡的显示缓存,AGP主存只是对缓存的扩大和补充。

低端机的UMA是通过PCI接口运行的,其速度较慢。

4.地址信号与数据信号分离

采用多路信号分离技术(demultiplexing),并通过使用边带寻址SBA(sidebandaddress)总线来提高随机内存访问的速度。

5.并行操作

允许在CPU访问系统RAM的同时AGP显示卡访问AGP内存,显示带宽也不与其它设备共享,从而进一步提高了系统性能。

三、AGP的工作模式

AGP的工作模式如下表所示。

从上表中可以看出,要真正达到良好的3D图形处理能力,应该采用2×

以上的工作模式。

在1×

模式下,由于带宽不足,并不能适合DIME的速度,3D图形处理能力仍然是不理想的。

因此在选购主板和AGP显示卡时,要注意它们是否支持AGP 

的工作模式。

目前,4×

模式尚未正式推出。

四、PCI和AGP的比较

下表列出了PCI和AGP的性能比较。

在采用AGP的系统中,由于显示卡通过AGP、芯片组与主内存相连,提高了显示芯片与主内存间的数据传输速度,让原需存入显示内存的纹理数据,现可直接存入主内存,这样可提高主内存的内存总线使用效率,也提高了画面的更新速度及Z 

buffer(Z缓冲)等数据的传输速度,而且还减轻了PCI总线的负载,有利于其它PCI设备充分发挥性能。

由于在PC98规格中,ISA总线已被取消,ISA设备终将被淘汰,所以,把占用了PCI总线大量带宽的显示卡移到AGP上是非常必要的。

当然AGP不可能取代PCI,因为我们已经多次说过AGP只是一个图形显示接口标准,而不是系统总线。

AGP插槽和AGP插卡的插脚都采用了与EISA相似的上下两层结构,因此减小了AGP插槽的尺寸。

图7是AGP插卡的两层金手指插脚。

IEEE1394总线 

IEEE1394是一种串行接口标准,这种接口标准允许把电脑、电脑外部设备、各种家电非常简单地连接在一起。

从IEEE 

1394可以连接多种不同外设的功能特点来看,也可以称为总线,即一种连接外部设备的机外总线。

IEEE1394的原型是运行在Apple 

Mac电脑上的Fire 

Wire(火线),由IEEE采用并且重新进行了规范。

它定义了数据的传输协定及连接系统,可用较低的成本达到较高的性能,以增强电脑与外设如硬盘、打印机、扫描仪,与消费性电子产品如数码相机、DVD播放机、视频电话等的连接能力。

由于要求相应的外部设备也具有IEEE1394接口功能才能连接到1394总线上,所以直到1995年第3季度Sony推出的数码摄像机加上了IEEE 

1394接口后,1394才真正引起广泛的注意。

采用1394接口的数码摄像机,可以毫无延迟地编辑处理影像、声音数据,性能得到增强。

数码相机、DVD播放机和一般消费性家电产品,如VCR、HDTV、音响等也都可以利用IEEE 

1394接口来互相连接。

电脑的外部设备,例如硬盘、光驱、打印机、扫描仪等,也可利用IEEE 

1394来传输数据。

机外总线将改变当前电脑本身拥有众多附加插卡、

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2