光纤理论与光纤结构Word格式文档下载.docx

上传人:b****1 文档编号:3419999 上传时间:2023-05-01 格式:DOCX 页数:38 大小:99.71KB
下载 相关 举报
光纤理论与光纤结构Word格式文档下载.docx_第1页
第1页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第2页
第2页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第3页
第3页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第4页
第4页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第5页
第5页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第6页
第6页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第7页
第7页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第8页
第8页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第9页
第9页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第10页
第10页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第11页
第11页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第12页
第12页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第13页
第13页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第14页
第14页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第15页
第15页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第16页
第16页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第17页
第17页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第18页
第18页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第19页
第19页 / 共38页
光纤理论与光纤结构Word格式文档下载.docx_第20页
第20页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

光纤理论与光纤结构Word格式文档下载.docx

《光纤理论与光纤结构Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《光纤理论与光纤结构Word格式文档下载.docx(38页珍藏版)》请在冰点文库上搜索。

光纤理论与光纤结构Word格式文档下载.docx

中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

B.按最佳传输频率窗口分:

常规型单模光纤和色散位移型单模光纤。

常规型:

光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

色散位移型:

光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:

1300μm和1550μm。

C.按折射率分布情况分:

突变型和渐变型光纤。

突变型:

光纤中心芯到玻璃包层的折射率是突变的。

其成本低,模间色散高。

适用于短途低速通讯,如:

工控。

但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

渐变型光纤:

光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

4.常用光纤规格:

单模:

8/125μm,9/125μm,10/125μm

多模:

50/125μm欧洲标准

62.5/125μm美国标准

工业,医疗和低速网络:

100/140μm,200/230μm

塑料:

98/1000μm用于汽车控制。

三.光纤制造与衰减:

1.光纤制造:

现在光纤制造方法主要有:

管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和VAD(轴向汽相沉积)法.

2.光纤的衰减:

造成光纤衰减的主要因素有:

本征,弯曲,挤压,杂质,不均匀和对接等。

本征:

是光纤的固有损耗,包括:

瑞利散射,固有吸收等。

弯曲:

光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压:

光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:

光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:

光纤材料的折射率不均匀造成的损耗。

对接:

光纤对接时产生的损耗,如:

不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

四.光纤的优点:

1.光纤的通频带很宽.理论可达30亿兆赫兹。

2.无中继段长.几十到100多公里,铜线只有几百米。

3不受电磁场和电磁辐射的影响。

4.重量轻,体积小。

通2万1千话路的900对双绞线,其直径为3英寸,重量8吨/KM。

而通讯量为其十倍的光缆直径为0.5英寸,重量450P/KM。

5.光纤通讯不带电,使用安全可用于易燃,易暴场所。

6.使用环境温度范围宽。

7.化学腐蚀,使用寿命长。

第二部分光缆

一.光缆的制造:

光缆的制造过程一般分以下几个过程:

1.光纤的筛选:

选择传输特性优良和张力合格的光纤。

2.光纤的染色:

应用标准的全色谱来标识,要求高温不退色不迁移。

3.二次挤塑:

选用高弹性模量,低线胀系数的塑料挤塑成一定尺寸的管子,将光纤纳入并填入防潮防水的凝胶,最后存放几天(不少于两天)。

4.光缆绞合:

将数根挤塑好的光纤与加强单元绞合在一起。

5.挤光缆外护套:

在绞合的光缆外加一层护套。

二.光缆的种类:

1.按敷设方式分有:

自承重架空光缆,管道光缆,铠装地埋光缆和海底光缆。

2.按光缆结构分有:

束管式光缆,层绞式光缆,紧抱式光缆,带式光缆,非金属光缆和可分支光缆。

3.按用途分有:

长途通讯用光缆、短途室外光缆、混合光缆和建筑物内用光缆。

三.光缆的施工:

多年来,做光缆施工使得我们已有了一套成熟的方法和经验。

(一)光缆的户外施工:

较长距离的光缆敷设最重要的是选择一条合适的路径。

这里不一定最短的路径就是最好的,还要注意土地的使用权,架设的或地埋的可能性等。

必须要有很完备的设计和施工图纸,以便施工和今后检查方便可靠。

施工中要时时注意不要使光缆受到重压或被坚硬的物体扎伤。

光缆转弯时,其转弯半径要大于光缆自身直径的20倍。

1.户外架空光缆施工:

A.吊线托挂架空方式,这种方式简单便宜,我国应用最广泛,但挂钩加挂、整理较费时。

B.吊线缠绕式架空方式,这种方式较稳固,维护工作少。

但需要专门的缠扎机。

C.自承重式架空方式,对线干要求高,施工、维护难度大,造价高,国内目前很少采用。

D.架空时,光缆引上线干处须加导引装置,并避免光缆拖地。

光缆牵引时注意减小摩擦力。

每个干上要余留一段用于伸缩的光缆。

E.要注意光缆中金属物体的可靠接地。

特别是在山区、高电压电网区和多地区一般要每公里有3个接地点,甚至选用非金属光缆。

 

2.户外管道光缆施工:

A.施工前应核对管道占用情况,清洗、安放塑料子管,同时放入牵引线。

B.计算好布放长度,一定要有足够的预留长度。

详见下表:

自然弯曲增加长度(m/km)

人孔内拐弯增加长度(m/孔)

接头重叠长度

(m/侧)

局内预留长度

(m)

5

0.5~1

8~10

15~20

其它余留安设计预留

C.一次布放长度不要太长(一般2KM),布线时应从中间开始向两边牵引。

D.布缆牵引力一般不大于120kg,而且应牵引光缆的加强心部分,并作好光缆头部的防水加强处理。

E.光缆引入和引出处须加顺引装置,不可直接拖地。

D.管道光缆也要注意可靠接地。

3.直接地埋光缆的敷设:

A.直埋光缆沟深度要按标准进行挖掘,标准见下表:

B.不能挖沟的地方可以架空或钻孔预埋管道敷设。

C.沟底应保正平缓坚固,需要时可预填一部分沙子、水泥或支撑物。

D.敷设时可用人工或机械牵引,但要注意导向和润滑。

E.敷设完成后,应尽快回土覆盖并夯实。

4.建筑物内光缆的敷设:

A.垂直敷设时,应特别注意光缆的承重问题,一般每两层要将光缆固定一次。

B.光缆穿墙或穿楼层时,要加带护口的保护用塑料管,并且要用阻燃的填充物将管子填满。

C.在建筑物内也可以预先敷设一定量的塑料管道,待以后要敷射光缆时再用牵引或真空法布光缆。

四.光缆的选用:

光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。

1.户外用光缆直埋时,宜选用铠装光缆。

架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。

2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。

一般在管道中或强制通风处可选用阻燃但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。

3.楼内垂直布缆时,可选用层绞式光缆(DistributionCables);

水平布线时,可选用可分支光缆(BreakoutCables)。

4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。

直埋光缆埋深标准

敷设地段或土质

埋深(m)

备注

普通土(硬土)

≥1.2

半石质(沙砾土、风化石)

≥1.0

全石质

≥0.8

从沟底加垫10cm细土或沙土

流沙

市郊、村镇

市内人行道

穿越铁路、公路

距道渣底或距路面

沟、渠、塘

农田排水沟

第三部分连接和检测

一.光缆的连接:

方法主要有永久性连接、应急连接、活动连接。

1.永久性光纤连接(又叫热熔):

这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。

一般用在长途接续、永久或半永久固定连接。

其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03dB/点。

但连接时,需要专用设备(熔接机)和专业人员进行操作,而且连接点也需要专用容器保护起来。

2.应急连接(又叫)冷熔:

应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。

这种方法的主要特点是连接迅速可靠,连接典型衰减为0.1~0.3dB/点。

但连接点长期使用会不稳定,衰减也会大幅度增加,所以只能短时间内应急用。

3.活动连接:

活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接起来的一种方法。

这种方法灵活、简单、方便、可靠,多用在建筑物内的计算机网络布线中。

其典型衰减为1dB/接头。

二.光纤检测:

光纤检测的主要目的是保证系统连接的质量,减少故障因素以及故障时找出光纤的故障点。

检测方法很多,主要分为人工简易测量和精密仪器测量。

1.人工简易测量:

这种方法一般用于快速检测光纤的通断和施工时用来分辨所做的光纤。

它是用一个简易光源从光纤的一端打入可见光,从另一端观察哪一根发光来实现。

这种方法虽然简便,但它不能定量测量光纤的衰减和光纤的断点。

2.精密仪器测量:

使用光功率计或光时域反射图示仪(OTDR)对光纤进行定量测量,可测出光纤的衰减和接头的衰减,甚至可测出光纤的断点位置。

这种测量可用来定量分析光纤网络出现故障的原因和对光纤网络产品进行评价。

第四部分光纤的应用及系统设计

一.光纤的应用:

人类社会现在已发展到了信息社会,声音、图象和数据等信息的交流量非常大。

以前的通讯手段已经不能满足现在的要求,而光纤通讯以其信息容量大、保密性好、重量轻体积小、无中继段距离长等优点得到广泛应用。

其应用领域遍及通讯、交通、工业、医疗、教育、航空航天和计算机等行业,并正在向更广更深的层次发展。

光及光纤的应用正给人类的生活带来深刻的影响与变革。

二.光纤网络系统设计:

光纤系统的设计一般遵循以下步骤:

1.首先弄清所要设计的是什么样的网络,其现状如何,为什么要用光纤。

2.根据实际情况选择合适是光纤网络设备、光缆、跳线及连接用的其它物品。

选用时应以可用为基础,然后再依据性能、价格、服务、产地和品牌来确定。

3.按客户的要求和网络类型确定线路的路由,并绘制布线图。

4.路线较长时则需要核算系统的衰减余量,核算可按下面公式进行:

衰减余量=发射光功率-接受灵敏度-线路衰减-连接衰减(dB)其中线路衰减=光缆长度×

单位衰减;

单位衰减与光纤质量有很大关系,一般单模为0.4~0.5dB/km;

多模为2~4dB/km。

连接衰减包括熔接衰减接头衰减,熔接衰减与熔接手段和人员的素质有关,一般热熔为0.01~0.3dB/点;

冷熔0.1~0.3dB/点;

接头衰减与接头的质量有很大关系,一般为1dB/点。

系统衰减余量一般不少于4dB。

5.核算不合格时,应视情况修改设计,然后再核算。

这种情况有时可能会反复几次。

三.设计实例:

1.北航部分校园网的改造:

根据其情况,在已有细缆网的一边使用一台LANart的三口中继器(双绞线-光纤-细缆),另一边使用一台LANart的带光纤主干的双绞线HUB。

中间用架空或地埋匀可的束管式4芯室外多模光缆再经过熔接为带ST头的室内跳线(因设备的光纤接口为ST型)。

衰减核算:

(一般多模设备在2km范围内不用核算,这里只做个例子)

发射功率:

-16dBm

接收灵敏度:

-29.5dBm

线路衰减:

1.5km×

3.5dB/km=5.25dB

连接衰减:

接头2个衰减为:

2点×

1dB/点=2dB

熔接两个点为:

0.07dB/点=0.14dB

衰减余量=-16dBm-(-29.5dBm)-5.25dB-0.14dB-2dB=6.11(dB)

经过上面的计算,可以看出系统容量大于4dB,以上选择可以满足要求。

2.福建校园网:

它是14座楼要用光纤连接起来,每座楼内均要有各自的子网(10Mbps以太网),相临每座楼之间的间距都小于2km。

考虑用FDDI双环做主干,在每座楼中放一台FR2100FDDI/以太网双环网桥,再用6芯室外管道光缆将它们连起来。

每座楼内均采用熔接的方法,将6芯室外光缆转接成带三条FDDI标准的MIC头跳线,以便连接FDDI网桥。

这样每座楼内要熔接6个点,同时需要一个一进八出的光纤终端盒,14座楼总共需要21条MIC跳线,14个终端盒,84个熔接点,14段6芯室外光缆和14台FDDI/以太网双环网桥。

由于楼间距都较小(小于2km),所以一般不用核算衰减余量。

光 缆 技 术

松套层绞式光缆技术 

  将已着色光纤与油膏同时加入到高模量塑料制成的松套管中,光纤在套管内可以移动。

不同的松套管沿中心加强芯绞合制成缆芯。

缆芯外加防护材料制成松套层绞式光缆。

  松套层绞式光缆的主要特点有:

  松套管材料本身具有耐水解特性和较高的强度,管内充以特种油膏,对光纤进行关键性保护。

  加强芯处于缆芯中央位置,松套管以适当绞合节距围绕加强芯层绞,通过控制光纤余长和调整绞合节距,可使光缆具有很好的抗拉性能和温度特性。

  松套管和加强芯间用缆膏填充绞合在一起,保证了松套管和加强芯间的防水性能。

  光缆的径向和纵向防水由多种措施保证。

  根据不同的要求,有多种抗侧压措施。

骨架式光纤带光缆技术

  将已制好的光纤带,叠放在螺旋骨架槽中制成缆芯。

缆芯外加防护材料制成骨架式光纤带光缆。

  骨架式光纤带光缆的主要特点有:

  光纤组装密度高,光缆直径相对小。

  骨架采用高密度聚乙烯材料,抗侧压性能好,对光纤带有很好的保护,同时可防止开剥光缆时损伤光纤。

  骨架槽沿光缆成螺旋式旋转,以保证放置于槽内的光纤带有足够的余长,保证了光缆的抗拉、弯曲和温度特性。

  光缆用遇水膨胀的阻水带而非油膏填充,既保证了光缆的阻水性能,又极大地提高了接续效率,便于施工和维护。

螺旋中心管式光缆技术

  将光纤套入由高模量的塑料做成的螺旋空间松套管中,套管内填充防水化合物,套管外施加一层阻水材料和铠装材料,两侧放置两根平行钢丝并挤制聚乙烯护套成缆。

  螺旋中心管式光缆的主要特点有:

  特有的螺旋槽松套管设计有利于精确控制光纤的余长,保证了光缆具有很好的机械性能和温度特性。

  松套管材料本身具有良好的耐水解性能和较高的强度,管内充以特种油膏,对光纤进行了关键性保护。

  两根平行钢丝保证光缆的抗拉强度。

  直径小、重量轻、容易敷设。

紧套光缆技术

  用外径为250μm的紫外光固化一次涂覆光纤直接紧套一层材料制成900μm紧套光纤。

以紧套光纤为单元,在单根或多根紧套光纤四周布放适当的抗张力材料,挤制一层阻燃护套料,制成单芯或多芯紧套光缆。

  紧套光缆的主要特点有:

  采用专用装置调节紧套松紧程度,获得最佳光纤剥离性和光学性能。

  抗张力材料采用高模量的芳纶丝,精确控制芳纶丝的放线张力,使光缆具有优良的抗拉机械性能。

  外护套采用阻燃材料,可以满足不同等级的防火要求。

光纤及其制造技术的最新进展

  1 前言

  光纤通信技术的飞速发展,加快了“光速经济”的到来。

为了适应通信技术和Internet的高速发展对超高码速、超宽带宽、超大容量的通信系统的要求,除了需要研制出更好的光纤无源器件和有源器件外,还需要开发出超低损耗、长波长工作窗口的新型光纤材料,以及更合理的新型光纤结构和精良的制造工艺。

  2 光纤新材料

  以SiO2材料为主的光纤,工作在0.8μm-1.6μm的近红外波段,目前所能达到的最低理论损耗在1550nm波长处为0.16dB/km,已接近石英光纤理论上的最低损耗极限。

如果再将工作波长加大,由于受到红外线吸收的影响,衰减常数反而增大。

因此,许多科学工作者一直在寻找超长波长(2μm以上)窗口的光纤材料。

这种材料主要有两种,即非石英的玻璃材料和结晶材料,晶体光纤材料主要有AgC1、AgBr、KBr、CsBr以及KRS-5等,目前AgC1单晶光纤的最低损耗在10.6μm波长处为0.1dB/km。

因此,需要寻求新型基体材料的光纤,以满足超宽带宽、超低损耗、高码速通信的需要。

  氟化物玻璃光纤是当前研究最多的超低损耗远红外光纤,它是以ZrF4-BaF2、HfF4-BaF2两系统为基体材料的多组分玻璃光纤,其最低损耗在2.5μm附近为1×

10(的负三次方)dB/km,无中继距离可达到1×

10(的5次方)km以上。

1989年,日本NTT公司研制成功的2.5μm氟化物玻璃光纤损耗只有0.01dB/km,目前ZrF4玻璃光纤在2.3μm处的损耗达到外0.7dB/km,这离氟化物玻璃光纤的理论最低损耗1×

10(的负三次方)dB/km相距很远,仍然有相当大的潜力可挖。

能否在该领域研制出更好的光纤,对于开辟超长波长的通信窗口具有深远的意义。

  硫化物玻璃光纤具有较宽的红外透明区域(1.2-12μm),有利于多信道的复用,而且硫化物玻璃光纤具有较宽的光学间隙,自由电子跃迁造成的能量吸收较少,而且温度对损耗的影响较小,其损耗水平在6μm波长处为0.2dB/km,是非常有前途的光纤。

而且,硫化物玻璃光纤具有很大的非线性系数,用它制作的非线性器件,可以有效地提高光开关的速率,开关速率可以达到数百Gb/s以上。

  重金属氧化物玻璃光纤具有优良的化学稳定性和机械物理性能,但红外性质不如卤化物玻璃好,区域可透性差,散射也大,但若把卤化物玻璃与重金属氧化物玻璃的优点结合起来,制造成性能优良的卤-重金属氧化物玻璃光纤具有重要的意义。

日本Furukawa电子公司,用VAD工艺制得的GeO2-Sb2O3系统光纤,损耗在2.05μm波长处达到了13dB/km,如果经过进一步脱OH-的工艺处理,可以达到0.1dB/km。

  聚合物光纤自19世纪60年代美国杜邦公司首次发明以来,取得了很大的发展。

1968年杜邦公司研制的聚甲基丙烯酸甲酯(PMMA)阶跃型塑料光纤(SIPOF),其损耗为1000dB/km。

1983年,NTT公司的全氘化PMMA塑料光纤在650nm波长处的损耗降低到20dB/km。

由于C-F键谐波吸收在可见光区域基本不存在,即使延伸到1500nm波长的范围内其强度也小于1dB/km。

全氟化渐变型PMMA光纤损耗的理论极限在1300nm处为0.25dB/km,在1500nm处为0.1dB/km,有很大的潜力可挖。

近年来,Y.KOIKE等以MMA单体与TFPMA(四氟丙基丙烯酸甲酯)为主要原材料,采用离心技术制成了渐变折射率聚合物预制棒,然后拉制成GIPOF(渐变折射率聚合物光纤),具有极宽的带宽(>1GHz·

km),衰减在688nm波长处为56dB/km,适合短距离通信。

国内有人以MMA及BB(溴苯)、BP(联苯)为主要原材料,采用IGP技术成功地制备了渐变型塑料光纤。

日本NTT公司最近开发出氟化聚酰亚胺材料(FULPI)在近红外光内有较高的透射性,同时还具有折射率可调、耐热及耐湿的优点,解决了聚酰亚胺透光性差的问题,现已经用于光的传输。

聚碳酸酯、聚苯乙烯的研究也在不断的进行中,相信在不久的未来更好性能的聚合物光纤材料得到开发和利用。

  特殊的环境对光纤有特殊的要求,石英光纤的纤芯和包层材料具有很好的耐热性,耐热温度达到400-500℃,所以光纤的使用温度取决于光纤的涂覆材料。

目前,梯型硅氧烷聚合物(LSP)涂层的热固化温度达400℃以上,在600℃的光传输性能和机械性能仍然很好。

采用冷的有机体在热的光纤表面进行非均匀成核热化学反应(HNTD),然后在光纤表面进行裂解生成碳黑,即碳涂覆光纤。

碳涂覆光纤的表面致密性好,具有极低的扩散系数,而且可以消除光纤表面的微裂纹,解决了光纤的“疲劳”问题。

  3 新型结构的光纤

  光纤的结构决定了光纤的传输性能,合理的折射率分布可以减少光的衰减和色散的产生。

为了改善光纤的波导性能,特别是既想获得低损耗,又想具有低色散,以适应长距离、大容量通信的要求,可以对光纤的结构进行设计,控制折射率的分布。

如采用三角形折射率分布的结构:

区配包层、凹陷包层、四包层结构,加大波导色散,从而使零色散波长产生位移,设计出了DSF(色散位移光纤),即G.653光纤,它把零色散波长搬到1550nm的最低损耗窗口,使光纤的损耗特性与色散特性得到了优化组合,提高了光纤通信系统的传输性能。

  G.653光纤在1550nm处的色散为零,给WDM(波分复用)系统带来了严重的FWM(四波混频)效应,为了克服DSF的不足,人们对DSF进行了改进,通过设计折射率的剖面,对零色散点进行位移,使其在1530-1565nm范围内,色散的绝对值在1.0-6.0ps/(nm·

km),维持一个足够的色散值,以抑制FWM、SPM(自相位调制)及XPM(交叉相位调制)等非线性效应,同时色散值也足够小,以保证单通道传输速率为10Gb/s,传输距离大于250km时无需进行色散补偿。

这种光纤即为NZDSF(非零色散位移光纤),ITU-T称之为G.655光纤。

  第一代G.655光纤主要为C波段(1530-1565nm)通信窗口设计的,主要有美国Lucent公司的True Wave和Corning公司的SMF-LS光纤,它们的色散斜率较大。

随着宽带宽光放大器(BOFA)的发展,WDM系统已经扩展到L波段(1565-1620nm)。

在这种情况下,如果色散斜率仍然维持原来的数值(0.07-0.10ps/(nm2·

km)),长距离传输时短波长和长波长之间的色散差异将随着距离的增加而增大,势必造成L波段高瑞过大的色散,影响了10Gb/s及以上高码速信号的传输距离,或者采用高代价的色散补偿措施;

而低波段端的色散又太小,多波长传输时不足以抑制FWM、SPM、XPM等非线性效应,因此,研制和开发出低色散斜率的光纤具有重要的实际价值。

  第二代G.655光纤适应了上述要求,具有较低的色散斜率,较好地满足了DWDM(密集波分复用)的要求。

第二代G.655光纤主要有美国Lucent公司的True Wave-RS光纤和TrueWave-XL光纤,其色散斜率降低到0.05ps/(nm2·

km)以下,Corning公司的LEAF(大有效面积光纤)、Pi

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2