用动网格模拟超音速飞机投弹过程.pdf

上传人:wj 文档编号:3437379 上传时间:2023-05-05 格式:PDF 页数:4 大小:2.54MB
下载 相关 举报
用动网格模拟超音速飞机投弹过程.pdf_第1页
第1页 / 共4页
用动网格模拟超音速飞机投弹过程.pdf_第2页
第2页 / 共4页
用动网格模拟超音速飞机投弹过程.pdf_第3页
第3页 / 共4页
用动网格模拟超音速飞机投弹过程.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

用动网格模拟超音速飞机投弹过程.pdf

《用动网格模拟超音速飞机投弹过程.pdf》由会员分享,可在线阅读,更多相关《用动网格模拟超音速飞机投弹过程.pdf(4页珍藏版)》请在冰点文库上搜索。

用动网格模拟超音速飞机投弹过程.pdf

Copyright2005FluentInc.JA212-Page1of4JOURNALARTICLESBYFLUENTSOFTWAREUSERSWorkingcloselywiththeU.S.AirForceMunitionsDirectorate,JacobsSverdrupengineershavedevelopedamethodtoaccuratelysimulatethebehaviorofstores(suchasmunitions)astheyarereleasedfromtransonicaircraft.Theseparationofstoresisachallengingproblemthatcostmanyaircraftduringtheperiodwhenflighttestingwastheonlywaytoevaluatealternativedesigns.Computationalfluiddynamics(CFD)simulationsofmunitionsseparationarechallengingbecausetherapidmovementrequirescontinualmodificationofthemesh,whichdrivesthedemandforcomputationalresources.JacobsSverdrupengineershaveovercomethisproblembyusinganunstructureddynamicmeshtechnique.Theabilitytodynamicallychangeanunstructuredmeshgreatlyincreasesthespeedofgridgenerationateachtimestepofthecalculation.ComparingtheCFDresultswithwindtunneltestingforonecasestudiedshowedthatthismethodwasabletoaccuratelypredictthelocationandvelocityofthecenterofgravity,theangularorientationanditsrateofchange,andsurfacepressureprofilesafterrelease.Theabilitytosimulateseparationeventswillsubstantiallyreducedesigntimeandcostandwillallowengineerstoevaluatemanymorepotentialdesigns,presentingtheopportunityforsubstantialperformanceimprovements.Theaerodynamicbehaviorofmunitionsorotherobjectsastheyarereleasedfromaircraftiscriticalbothtotheaccuratearrivalofthemunitionsatthetargetandthesafetyofthereleasingaircraft.Thechallengeisespeciallygreatforobjectsthataredynamicallyunstable,suchasfueltanksandsomemodern,agilemunitionsintheeventofcontrolfailure.Inthedistantpast,separationtestingwasaccomplishedsolelyusingflighttests.Thisapproachwasverytime-consuming,oftenrequiringyearstocertifyaweapon.Itwasalsoexpensiveandoccasionallyledtothelossofanaircraftduetounexpectedbehaviorofthestorebeingtested.Inthe1960s,methodsofpredictingstoreseparationinwindtunneltestsweredeveloped.Thesetestshaveprovensovaluablethattheyarenowtheprimarydesigntoolused.However,windtunneltestsarestillexpensive,havelongleadtimes,andsufferfromlimitedaccuracyincertainsituations,suchaswheninvestigatingstoresreleasedfromwithinweaponsbaysortheripplereleaseofmultiplemovingobjects.Inaddition,becauseverysmall-scalemodelsmustoftenbeused,scalingproblemscanreduceaccuracy.DynamicMeshingModelsStoreSeparationfromTransonicAircraftJA212Figure1:

Perspectiveviewofthewing/pylon/storegeometryByDerylO.SnyderAerospaceEngineer,JacobsSverdrup,Inc.EglinAirForceBase,FloridaCopyright2005FluentInc.JA212Page2of4TheadventofsimulationInrecentyears,engineershavebegunusingmodelingandsimulationtoreducecertificationcostandevaluateadditionaldesignsinordertoincreasethemarginofsafetyforflight-testing.ACFDsimulationprovidesfluidvelocity,pressure,temperature,andothervariables,asappropriate,throughoutthesolutiondomainforproblemswithcomplexgeometriesandboundaryconditions.Aspartoftheanalysis,anengineermaychangethegeometryofthesystemortheboundaryconditions,andobservetheeffectofthechangesonfluidflowpatternsordistributionsofothervariables.TheuseofCFDformodelingstoreseparationbeganbycombiningtraditionalsteady-statesolutionswithempiricalorsemi-empiricalapproaches.ThemethodologybecamemoreusefulwiththeinnovationofChimeraoverset(overlapping)gridapproachesthatmadeitpossibletoperformunsteady,fullfieldsimulationswithorwithoutviscouseffects.Untilrecently,CFDhasnotreacheditsfullpotentialformodelingtransonicseparationeventsbecauseofthelargeamountoftimerequiredtoperformsimulations.Thegridmustbegenerated,assembledandrecalculatedateachtimestepofthesimulation.Finegridsandsmalltimestepsareoftenrequiredforaccuracyandstability,whichincreasescomputationaltime.Themosttime-consumingaspectoftheFigure2:

Surfacemeshesforcoarse,nominal,andfinegridsCopyright2005FluentInc.JA212-Page3of4simulationisusuallythegridgenerationandassembly.Thisisespeciallytrueforcomplexstoregeometries,andinparticular,forthecaseofstoresreleasedfromweaponsbays.Thesebaysoftencontainintricategeometricfeaturesthataffecttheflowfield.UnstructureddynamicmeshingapproachToimproveonthesemethods,Sverdrupengineerssetouttodevelopanunstructureddynamicmeshapproachforstoreseparationsimulations.Gridgenerationtimewithunstructuredmeshesisreducedbecausetheusersinputislargelylimitedtothegenerationofasurfacemesh.Also,becausetherearenooverlappinggridregions,fewergridpointsarerequired.TheSverdrupcomputationalapproachconsistsofthreedistinctcomponents:

aflowsolver,asix-degree-of-freedom(6DOF)trajectorycalculator,andadynamicmeshalgorithm.TheFLUENTflowsolverfromFluentIncorpor,Lebanon,NewHampshire,isusedtosolvethegoverningfluiddynamicequationsateachtimestep.Fromthissolution,theaerodynamicforcesandmomentsactingonthestorearecomputedbyintegratingthepressureoverthesurface.Theforcesandmomentsareusedtocomputethemovementofthestorebythe6DOFtrajectorycode.ThiscodeintegratestheNewton-EulerequationsofmotionwithinFLUENTasauser-definedfunction(UDF)thatisdynamicallylinkedwiththeFLUENTsolveratruntime.Alocalremeshingalgorithmisusedtoaccommodatethemovingbodyinthediscretizedcomputationaldomain.Finally,theunstructuredmeshismodifiedtoaccountforstoremovementviathedynamicmeshalgorithm.Whenthemotionofthebodyissmall,alocalizedsmoothingmethodisused.Whenthemotionofthemovingbodyislarge,poorqualitycells,basedonvolumeorskewnesscriteria,areagglomeratedandlocallyremeshed.ValidatingthenewmethodThisapproachwasdemonstratedonagenericwing/pylon/storegeometryforwhichbenchmarkexperimentaldatawasavailable.Thewingisa45-degreeclippeddeltawitha25-footrootchordlength.Theogive-flatpylonextends2feetbelowthewingleadingedge.Thestoreconsistsofatangent-ogiveforebody,aclippedtangent-ogiveafterbody,andacylindricalcenterbody.Fluentpreprocessor,Gambit,wasusedtogeneratetrianglesurfacemeshesfromCADgeometryfiles.ThemesheswereimportedintoFluentsmeshingpreprocessor,TGrid,forgenerationofthetetrahedralvolumemesh.TheautomatedmeshingtoolsinGAMBITandTGridmadeitpossibletocreateallthreemeshesinjustafewhours.Nonpermeablewallboundaryconditionswereusedforthewing,pylon,andstoresurfaces.Apressurefarfieldconditionwasusedattheupstreamanddownstreamdomainextents,asymmetryplanewasusedatthewingroot,andthedownstreamboundarywasassignedapressureoutletcondition.TheinitialconditionusedfortheseparationanalysisFigure3:

Comparisonofnumerical(blue)andexperimental(shadow)separationeventsCopyright2005FluentInc.JA212-Page4of4wasafullyconvergedsteady-statesolution.Timestepsofthreesizes,0.01sec.,0.002secand0.0004sec.,wereevaluatedforeachofthreegridrefinementsused.TheresultsshowedthatCFDperformedverywellinmodelingaseparationeventatMach1.2atanaltitudeof38,000feet.ThecenterofgravitylocationmatchedverycloselywiththeexperimentaldataforallthreegridrefinementsThestoremovedrearwardandslightlyinboardasitfell.TheCFDresultsslightlyunderpredictedtherearwardacceleration.Thepitchandyawanglesofthestorecalculatedbythesimulationalsoagreedwellwiththeexperimentalresults.Therollangleisespeciallydifficulttomodelbecausethemomentofinertiaabouttherollaxisismuchsmallerthanthatofthepitchandyawaxes.Consequentlytherollisverysensitivetoerrorsinaerodynamicforceprediction.Inthiscase,thestoreinitiallypitchednose-upinresponsetothemomentproducedbytheejectors.Oncefreeoftheejectors,thenose-downaerodynamicpitchingmomentreversedthetrend.Thestoreyawedinitiallyoutboarduntilabout0.55seconds,afterwhichitbeganturninginboard.Thestorerolledcontinuouslyoutboardthroughoutthefirst0.8secondsoftheseparation.Thistrendwasunderpredictedbythesimulationandthecurvetendedtodivergefromtheexperimentsafterapproximately0.3seconds.Experimentalsurfacepressuredatawasalsoavailablefromthewindtunneltests.Thedatawascomparedwiththesimulationalongaxiallinesofthestorebodyatfourcircumferentiallocationsandthreeinstantsintime.Theagreementbetweenthesimulationandexperimentswasexceptional.Ofparticularinterestedwasthe5degreecircumferentiallocationlineatt=0.0becauseitislocatedinthesmallgapbetweenthepylonandstore.Thesimulationdidagoodjobofcapturingthedecelerationneartheleadingedgeofthepylon.Allinall,thisstudyshowedthatCFDwithunstructureddynamicmeshingcanbeapowerfultoolformodelingtransonicstoreseparation.Thesimulationcapturedtheexperimentallocation,velocity,orientationandangularratetrends.Surfacepressuredistributionswerealsoinexcellentagreementwiththeexperimentsatthethreetimesatwhichtheywerecomparedduringtheseparationevent.Thisnewapproachofferstheabilitytoobtainaccuratestoreseparationpredictionswithquickturn-aroundtimes.Gridgenerationcanbeaccomplishedinamatterofhours,andrunssuchasthenominalgridcaseexaminedinthisstudycanbecompletedovernightonadesktopworkstation.Theuseofunstructuredtetrahedralmeshesandafullyparallelized,accurateandstablesolverallowsforsmallgridsandrelativelylargetimestepswithoutanexcessivecomputationalburden.Figure4:

Rigidboundarylayermeshattachedtothestore

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2