组合数学引论课后答案(部分).doc

上传人:wj 文档编号:3527733 上传时间:2023-05-06 格式:DOC 页数:31 大小:1.75MB
下载 相关 举报
组合数学引论课后答案(部分).doc_第1页
第1页 / 共31页
组合数学引论课后答案(部分).doc_第2页
第2页 / 共31页
组合数学引论课后答案(部分).doc_第3页
第3页 / 共31页
组合数学引论课后答案(部分).doc_第4页
第4页 / 共31页
组合数学引论课后答案(部分).doc_第5页
第5页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

组合数学引论课后答案(部分).doc

《组合数学引论课后答案(部分).doc》由会员分享,可在线阅读,更多相关《组合数学引论课后答案(部分).doc(31页珍藏版)》请在冰点文库上搜索。

组合数学引论课后答案(部分).doc

组合数学引论课后答案

习题一

1.1任何一组人中都有两个人,它们在该组内认识的人数相等。

1.2任取11个整数,求证其中至少有两个数,它们的差是10的倍数

1.3任取n+1个整数,求证其中至少有两个数,它们的差是n的倍数

1.4在1.1节例4中证明存在连续的一些天,棋手恰好下了k盘棋(k=1,2,…,21).问是否可能存在连续的一些天,棋手恰好下了22盘棋

1.5将1.1节例5推广成从1,2,…,2n中任选n+1个数的问题

1.6从1,2,…,200中任取100个整数,其中之一小于16,那么必有两个数,一个能被另一个整除

1.7从1,2,…,200中取100个整数,使得其中任意两个数之间互相不能整除

1.8任意给定52个数,它们之中有两个数,其和或差是100的倍数

1.9在坐标平面上任意给定13个整点(即两个坐标均为整数的点),则必有一个以它们中的三个点为顶点的三角形,其重心也是整点。

1.10上题中若改成9个整点,问是否有相同的结论?

试证明你的结论

1.11证明:

一个有理数的十进制数展开式自某一位后必是循环的。

1.12证明:

对任意的整数N,存在着N的一个倍数,使得它仅有数字0和7组成。

(例如,N=3,我们有;N=4,有;N=5,有;……)

1.13

(1)在一边长为1的等边三角形中任取5个点,则其中必有两个点,该两点的距离至多为;

(2)在一边长为1的等边三角形中任取10个点,则其中必有两个点,该两点的距离至多为;

(3)确定,使得在一边长为1的等边三角形中任取个点,则其中必有两个点,该两点的距离至多为;

1.14一位学生有37天时间准备考试,根据以往的经验,她知道至多只需要60个小时的复习时间,她决定每天至少复习1小时,证明:

无论她的复习计划怎样,在此期间都存在一些天,她正好复习了13个小时。

1.15从1,2,…,2n中任选n+1个整数,则其中必有两个数,它们的最大公约数为1

出的数属于同一个鸽巢,即它们的最大公约数为1

1.16针对1.1节的例6,当m,n不是互素的两个整数时,举例说明例中的结论不一定成立

习题二

2.1证明:

在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。

证明:

假设没有人谁都不认识:

那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:

那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

2.2任取11个整数,求证其中至少有两个数的差是10的整数倍。

证明:

对于任意的一个整数,它除以10的余数只能有10种情况:

0,1,…,9。

现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。

2.3证明:

平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。

证明:

有5个坐标,每个坐标只有4种可能的情况:

(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。

由鸽巢原理知,至少有2个坐标的情况相同。

又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。

因为奇数+奇数=偶数;偶数+偶数=偶数。

因此只需找以上2个情况相同的点。

而已证明:

存在至少2个坐标的情况相同。

证明成立。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?

证明:

根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。

2.5一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。

那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?

证明:

根据推论2.2.1,若将4*(20-1)+1=77个水果取出,必有20个相同种类的水果。

2.6证明:

在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。

(书上例题2.1.3)

证明:

对于任意一个整数,它除以2n的余数显然只有2n种情况,即:

0,1,2,…,2n-2,2n-1。

而现在有任意给定的n+2个整数,我们需要构造n+1个盒子,即对上面2n个余数进行分组,共n+1组:

{0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。

根据鸽巢原理,n+2个整数,必有两个整数除以2n落入上面n+1个盒子里中的一个,若是{0}或{n}则说明它们的和及差都能被2n整除;若是剩下n-1组,因为一组有两个余数,余数相同则它们的差能被2n整除,不同则它们的和能被2n整除。

证明成立。

2.7一个网站在9天中被访问了1800次,证明:

存在连续的3天,这个网站的访问量超多600次。

证明:

设网站在9天中访问数分别为a1,a2,...,a9其中a1+a2+...+a9=1800,

令a1+a2+a3=b1,a4+a5+a6=b2,a7+a8+a9=b3

因为(b1+b2+b3)/3>=600由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。

所以存在有连续的三天,访问量大于等于600次。

2.8将一个矩形分成5行41列的网格,每个格子涂1种颜色,有4种颜色可以选择,证明:

无论怎样涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。

证明:

首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。

另外,每列中两个单元格的不同位置组合有=10种,这样一列中两个同色单元格的位置组合共有10*4=40种情况。

而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相同,也就是必有一个由格子构成的矩形的4个角上的格子是同一颜色。

2.9将一个矩形分成(m+1)行列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:

无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。

证明:

(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。

(2)每列中两个单元格的不同位置组合有种,这样一列中两个同色单元格的位置组合共有种情况

(3)现在有列,根据鸽巢原理,必有两列相同。

证明结论成立。

2.10一名实验员在50天里每天至少做一次实验,而实验总次数不超过75。

证明一定存在连续的若干天,她正好做了24次实验。

证明:

令b1,b2,...,b50分别为这50天中他每天的实验数,并做部分和

a1=b1,a2=b1+b2,。

a50=b1+b2+...+b50.

由题,bi>=1(1<=i<=50)且a50<=75

所以1<=a1

考虑数列a1,a2,...,a50,a1+24,a2+24,a50+24,它们都在1与75+24=99之间。

由鸽巢原理知,其中必有两项相等。

由(*)知,a1,a2,...,a50互不相等,从而a1+24,...a50+24也互不相等,所以一定存在1<=i

所以从第i+1天到第j天这连续j-i天中,她正好做了24次实验。

2.11证明:

从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。

证明:

将S划分为{1,3,5},{7,9,11}……,{595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其差最多为4.

2.12证明:

从1~200中任意选取70个数,总有两个数的差是4,5或9。

证明:

设这70个数为

a1,a2,…,a70,

a1+4,a2+4,…,a70+4,

a1+9,a2+9,…,a70+9,

取值范围209,共210个数

2.13证明:

对于任意大于等于2的正整数n,都有R(2,n)=n。

证明:

要证R(2,n)=n,用红蓝两色涂色Kn的边。

当n=2时,R(2,2)=2,因为不管用红还是蓝色都是完全二边形。

假设当n=k时成立,即存在R(2,k)=k(没有一条红边,只有蓝边),

当n=k+1时,R(2,k+1)

若无红边,要想有完全k+1边形,必得有k+1个点,即R(2,k+1)=k+1。

证明成立。

习题三

3.1有10名大学生被通知参加用人单位的面试,如果5个人被安排在上午面试,5个人被安排在下午面试,则有多少种不同的安排面试的顺序?

解:

上午的5个人全排列为5!

下午的5个人全排列为5!

所以有,共14400种不同的安排方法。

3.2某个单位内部的电话号码是4位数字,如果要求数字不能重复,那么最多可有多少个号码?

如果第一位数字不能是0,那么最多能有多少个电话号码?

解:

由于数字不能重复,0-9共10个数字,所以最多有10*9*8*7=5040种号码;若第一位不能是0,则最多有9*9*8*7=4536种号码。

3.318名排球运动员被分成A,B,C三个组,使得每组有6名运动员,那么有多少种分法?

如果是分成三个组(不可区别),使得每组仍有6名运动员,那么有多少种分法?

解:

1)种

2)/3!

3.4教室有两排,每排8个座位。

现有学生14人,其中的5个人总坐在前排,4个人总坐在后排,求有多少种方法将学生安排在座位上?

解:

前排8个座位,5人固定,共种方法;后排8个座位,4人固定,共种方法;前排和后排还剩7个座位,由剩下的5人挑选5个座位,共种方法;则一共有种安排方法。

3.5将英文字母表中的26个字母排序,要求任意两个元音字母不能相邻,则有多少种排序方法?

解:

先排21个辅音字母,共有21!

再将5个元音插入到22个空隙中,

故所求为

(插入法)

3.6有6名先生和6名女士围坐一个圆桌就餐,要求男女交替就坐,则有多少种不同的排坐方式?

解:

6男全排列6!

;6女全排列6!

;6女插入6男的前6个空或者后6个空,即女打头或男打头6!

*6!

*2;再除以围圈重复得(6!

*6!

*2)/12=6!

*5!

男6的圆排列为5!

,对每个男的排列,女要在他们之间的6个位置,进行线性排列6!

(而不是5!

)。

(圆排列可以通过线性排列来解决)

3.715个人围坐一个圆桌开会,如果先生A拒绝和先生B和C相邻,那么有多少种排坐方式?

解:

15人圆排列14!

A与B相邻有2*14!

/14=2*13!

A与C相邻有2*14!

/14=2*13!

A与BC同时相邻有2*13!

/13=2*12!

于是A不与B、C相邻的坐法共14!

-2*13!

-2*13!

+2*12!

(用到了容斥原理)

3.8确定多重集的11-排列数?

解:

M的11排列=[M-{a}]的11排列+[M-{b}]的11排列+[M-{c}]的11排列,即=27720

当然了,容斥原理,生成函数也可以做。

3.9求方程,满足的整数解的个数。

解:

则有,由定理3.3.3,解个数为:

3.10书架上有20卷百科全书,从中选出4卷使得任意两本的卷号都不相邻的选法有多少种?

解:

n=20,r=4,

证明见38页。

若卷号差为2,3,。

,公式为?

3.11确定(2x-3y)5展开式中x4y和x2y4的系数。

解:

1):

,系数为-240

2):

系数为0。

3.12确定(1+x)-5展开式中x4的系数。

解:

,n=5,r=4,则系数为

3.13确定(x+2y+3z)8展开式中x4y2x2的系数。

解:

3.14证明组合等式:

,其中n,k为正整数。

解:

右边是(n+k+1)元集合上k个元素子集的个数,这些子集可分为以下k+1类:

第1类:

k元子集中不含a1的子集有个;

第2类:

k元子集中含a1而不含a2的子集是个;

第3类:

k元子集中含a1和a2,而不含a3的子集是

……

第k+1类:

k元子集中含a1,a2,……,ak,而不含ak+1的子集是

由加法原理得证。

根据组合意义进行证明

3.15利用,求。

解:

首先有:

(p51的(3))

根据已知条件代入以上等式得:

又由

得,

则原式

3.16在一局排球比赛中,双方最终的比分是25:

11,在比赛过程中没有出现5平的比分,求有多少种可能的比分记录?

解:

根据题意,相当于求从点(0,0)到点(25,11)且不经过(5,5)的非降路径数,即为:

3.17在一局乒乓球比赛中,运动员甲以11:

7战胜运动员乙,若在比赛过程中甲从来没有落后过,求有多少种可能的比分记录?

解:

根据题意,相当于求从点(0,0)到点(11,7)且从下方不穿过y=x的非降路径数,见58页,即为:

3.18把20个苹果和20个橘子一次一个的分发给40个幼儿园的小朋友,如果要求分发过程中任意时刻篮子中余下的两种水果数目都不相同(开始和结束时除外),求有多少种分法方法?

解:

根据题意,相当于求从点(0,0)到点(20,20)且不接触y=x的非降路径数,即为:

n=20,则方法数为:

3.19计算和。

解:

1)

一个递推公式,

2)

3.20

(1)证明S(n,3)=

方法一:

先考虑3个盒子不同,要保证每个盒子非空:

总数为3n,排除到一个盒子为空和两个盒子为空的情况,即:

一个盒子为空(放到两个盒子去),例如第一个盒子为空,第二和第三不空:

3(2n-2)

两个盒子为空,例如第一个和第二盒子为空:

3*1

(3n-3(2n-2)-3)/3!

还可以直接考虑盒子相同。

(2)证明:

相当于n个不同球放到相同的n-2个盒子,每个盒子非空,至少为1个,这样使得剩余的2个球要到n-2个盒子,即使得一个盒子有3个,或有二个盒子都装2个球:

使得一个盒子有3个球:

C(n,3)

有二个盒子都装2个球:

C(n,4)C(4,2)/2!

3.21

(1)会议室中有2n+1个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少种摆法?

解:

如果没有附加限制则相当于把2n个相同的小球放到3个不同的盒子里,有种方案,而不符合题意的摆法是有一排至少有n+1个座位。

这相当于将n+1个座位先放到3排中的某一排,再将剩下的2n-(n+1)=n-1个座位任意分到3排中,这样的摆法共有种方案,所以符合题意的摆法有:

可以用代数法

(2)会议室中有2n个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少种摆法?

习题四

4.1 在1到1000之间不能被2,5和11整除的整数有多少个?

解:

设S是这1000个数的集合,性质是可被2整除,性质是可被5整除,性质是可被11整除。

,,

,,,

4.3 一项对于A,B,C三个频道的收视调查表明,有20%的用户收看A,16%的用户收看B,14%的用户收看C,8%的用户收看A和B,5%的用户收看A和C,4%的用户收看B和C,2%的用户都看。

求不收看A,B,C任何频道的用户百分比?

4.2 求1到1000之间的非完全平方,非完全立方,更不是非完全四次方的数有多少个?

解:

设S是1000个数的集合,

性质是某数的完全平方,

性质是某数的完全立方,

性质是某数的完全四次方。

,,

,,,

4.4某杂志对100名大学新生的爱好进行调查,结果发现他们都喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,求有多少人只喜欢看电影?

解:

由题意可得,P1,P2,P3分别表示喜欢看球赛、电影和戏剧的学生,相应的学生集合分别为A1,A2,A3,依题意,这100名大学生中每人至少有三种兴趣中的一种,则

所以可得既喜欢看球赛有喜欢看电影的人有

因此只喜欢看电影的人有

=52-(26+16)+12=22人

4.5 某人有六位朋友,他跟这些朋友每一个都一起吃过晚餐12次,跟他们中任二位一起吃过6次晚餐,和任意三位一起吃过4次晚餐,和任意四位一起吃过3次晚餐,任意五位一起吃过2次晚餐,跟六位朋友全部一起吃过一次晚餐,另外,他自己在外吃过8次晚餐而没碰见任何一位朋友,问他共在外面吃过几次晚餐?

4.6 计算多重集S={4•a,3•b,4•c,6•d}的12-组合的个数?

解:

其中,,

,,

,,,,,,

4.7 计算多重集S={∞•a,4•b,5•c,6•d}的10-组合的个数?

解:

将,其他思想同上题。

其中,,,,,,,,,,

4.8 用容斥原理确定如下两个方程的整数解的个数。

1)x1+x2+x3=15,其中x1,x2,x3都是非负整数其都不大于7;

2)x1+x2+x3+x4=20,其中x1,x2,x3,x4都是正整数其都不大于9;

解:

1)与{7a,7b,7c}的15组合数相等,为28

2)

,因此用代替,代替,代替,代替有

与{8a,8b,8c,8d}的16组合数相等为489

4.9定义D0=1,证明:

证明:

考虑到n个数的全排列包含错位排列和非错排,其中表示在n个数中任选k个,这个k个数构成了一个错排,而剩余的n-k个数还在原来的位置。

,显然

(另一种方法:

组合分析法)

4.10证明:

Dn满足:

  n为整数且n3

证明:

由定理4.3.1得

4.11有10名女士参加一个宴会,每人都寄存了一顶帽子和一把雨伞,而且帽子、雨伞都是互不相同的,当宴会结束的离开的时候,如果帽子和雨伞都是随机的还回的,那么有多少种方法使得每位女士拿到的物品都不是自己的?

解:

由于帽子全部拿错和雨伞全部拿错是两个相互独立的事件,设帽子全错为

雨伞全错为解

4.13计算棋盘多项式R()。

解:

R()=x*R()+R()

=x*(1+3x+x2)+(1+x)*R()

=x3+3x2+x+(1+x)[xR()+R()]

=x3+3x2+x+(1+x)[x(1+x)+(1+4x+2x2)]

=5x3+12x2+7x+1

4.14有A,B,C,D,E五种型号的轿车,用红、白、蓝、绿、黑五种颜色进行涂装。

要求A型车不能涂成黑色;B型车不能涂成红色和白色;C型车不能涂成白色和绿色;D型车不能涂绿色和蓝色;E型号车不能涂成蓝色,求有多少种涂装方案?

解:

ABCDE

绿

1.若未规定不同车型必须涂不同颜色,则:

涂装方案

2.若不同车型必须涂不同颜色,则:

禁区的棋盘多项式为:

1+8x+22x2+25x3+11x4+x5

所以:

5!

-8*4!

+22*3!

-25*2!

+11*1!

-1=20

4.15计算

(舍)

4.16计算T={∞•1,∞•2,∞•3,∞•4}的长度为4的圆排列数。

(舍)

补:

(1)在1~2000中能被7整除,但不能被6和10整除的个数。

证明:

A1,A2,A3表示被6、7和10整除的数的子集,所求:

=219

(2)在1~2000中至少被2、3和5两个数整除的数的个数?

=534

习题五

5.1求如下数列的生成函数。

(1);

(2);

(3);(4);

(5);(6);

解:

(1)由已知得

(2)设则

又因为故

或者

(3)

(4)

(5)

(6)

5.2求如下数列的指数生成函数。

(1);

(2);

(3);

解:

(1)

(2)

(3)

则故

5.3已知数列的生成函数是,求.

解:

5.4求展开式中的系数是多少?

(1)若取0,则取5个,这种情况有种;

(2)若取1,则取3个,这种情况有或;

(3)若取2,则取1个,这种情况有;

故系数为=91457520。

其他方法

5.5三个人每个人投一次骰子,有多少种方法使得总点数为9?

解:

这相当于有9个球,用隔板将其分成3组,共有种方法。

又因为这次点数小于等于6,即711,171和117三种情况不符,故共有25种方法。

5.6求在102和104之间的各位数字之和等于5?

解:

(1)三位数时,相当于的非负整数解的个数。

故中为展开式的系数。

(2)四位数时,相当于的非负整数解的个数。

5.7一个1×n的方格图形用红、蓝、绿和橙四种颜色涂色,如果有偶数个方格被涂成红色,还有偶数个方格被涂成绿色,求有多少种方案?

解:

涂色方案数为则:

因此:

,所以有种方案。

5.8有4个红球,3个黄球,3个蓝球,每次从中取出5个排成一行,求排列的方案数?

解:

设每次取出的k个球的排列数为,数列的指数型生成函数为则有

而我们所求的是的系数。

故有。

5.9计算用3个A,3个G,2个C和1个U构成长度为2不同的RNA链的数量。

解:

中的系数,有=15.

5.10 计算和。

解:

(1)构造多项式则即的系数,则,故。

(2),的非负整数解为(0,0,4),(1,2,3),(0,2,2),(0,3,1),(0,4,0),(1,0,3),(1,1,2),(1,2,1),(1,3,0),(2,0,2),(2,1,1),(2,2,0),(3,0,1),(3,1,0),(4,0,0)

5.11设表示把元集划分成非空子集的方法数,我们称为Bell数。

证明:

证明:

当有1个盒子时,方法数,

当有2个盒子时,方法数,

当有k个盒子时,方法数,

当有n个盒子时,方法数,

当有n+1个盒子时,至少有一个空盒,不符。

5.12有重为1g的砝码重为1g的3个,重为2g的4个,重为4g的2个,求能称出多少种重量?

解:

即求多项式中展开式有多少项

(除1外),原多项式

故共有19种重量。

5.13已知数列的指数生成函数是,求.

解:

ak=5,k不等于2

ak=7,k=2

补:

3个l,2个2,5个3这十个数字能构成多少个4位数偶数。

解问题是求多重集S={3个1,2个2,5个3}的4排列数,且要求排列的末尾为2(偶数)。

可以把问题转化成求多重集S={3个1,1个2,5个3},

其指数生成函数为

展开后得的系数为20,所以能组成20个4位数的偶数。

习题六

6.1设,建立的递推关系并求解。

解:

6.2求解递推关系:

(1)

解:

(2)

解:

(3)

解:

(4)

解:

6.3求解递推关系:

(1)

解:

(2)

解:

(3)

解:

(4)

解:

6.4求解递推关系:

(1)

(2)

(3)

(4)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2