液压机设计论文Word文档下载推荐.doc

上传人:聆听****声音 文档编号:3630015 上传时间:2023-05-02 格式:DOC 页数:53 大小:997.50KB
下载 相关 举报
液压机设计论文Word文档下载推荐.doc_第1页
第1页 / 共53页
液压机设计论文Word文档下载推荐.doc_第2页
第2页 / 共53页
液压机设计论文Word文档下载推荐.doc_第3页
第3页 / 共53页
液压机设计论文Word文档下载推荐.doc_第4页
第4页 / 共53页
液压机设计论文Word文档下载推荐.doc_第5页
第5页 / 共53页
液压机设计论文Word文档下载推荐.doc_第6页
第6页 / 共53页
液压机设计论文Word文档下载推荐.doc_第7页
第7页 / 共53页
液压机设计论文Word文档下载推荐.doc_第8页
第8页 / 共53页
液压机设计论文Word文档下载推荐.doc_第9页
第9页 / 共53页
液压机设计论文Word文档下载推荐.doc_第10页
第10页 / 共53页
液压机设计论文Word文档下载推荐.doc_第11页
第11页 / 共53页
液压机设计论文Word文档下载推荐.doc_第12页
第12页 / 共53页
液压机设计论文Word文档下载推荐.doc_第13页
第13页 / 共53页
液压机设计论文Word文档下载推荐.doc_第14页
第14页 / 共53页
液压机设计论文Word文档下载推荐.doc_第15页
第15页 / 共53页
液压机设计论文Word文档下载推荐.doc_第16页
第16页 / 共53页
液压机设计论文Word文档下载推荐.doc_第17页
第17页 / 共53页
液压机设计论文Word文档下载推荐.doc_第18页
第18页 / 共53页
液压机设计论文Word文档下载推荐.doc_第19页
第19页 / 共53页
液压机设计论文Word文档下载推荐.doc_第20页
第20页 / 共53页
亲,该文档总共53页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

液压机设计论文Word文档下载推荐.doc

《液压机设计论文Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《液压机设计论文Word文档下载推荐.doc(53页珍藏版)》请在冰点文库上搜索。

液压机设计论文Word文档下载推荐.doc

伴随着电气控制技术、液压传动技术的不断发展,液压机的自动化程度、加工精度将进一步得到提高,实现智能化控制。

1.2液压传动控制系统及设计要求

液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程(见图1-1)。

因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。

液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。

液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。

动力元件

液压能

控制回路

执行元件

机械能

机械能等

图1-1液压传动能量传动过程

(1)液压机总体方案设计,其中包括主机的结构设计和工艺设计、零部件的结构设计和工艺设计、部件装配方案设计;

(2)通过液压系统总体设计方案的对比,确定合理的液压系统设计方案。

主要包括液压系统原理图设计、液压元件结构、工艺设计、液压站总体布局设计;

(3)电气控制系统设计,包括主电路和控制电路电路图设计;

(4)设计方案确定时,必须考虑选用什么样的制造材料,达到什么样的表面加工质量,采用什么样的机械加工设备,选择什么样的热处理方式等;

(5)整个设备满足拆装方便,运输方便的要求;

(6)液压机能够准确完成如下工作循环:

主缸活塞滑块快速下行、主缸活塞滑块慢速加压、主缸保压、主缸卸压、主缸活塞滑块回程、顶出缸顶出、顶出缸退回等;

(7)设备达到总体布局合理,结构紧凑、工作稳定可靠、操作简单、维护方便、环境污染小、工作的时候噪音低、自动化程度高等,能够完成冲压、冷挤、校直、弯曲、粉末冶金压制成型、薄板拉伸、压装成型等加工工艺。

第二章液压机总体设计

2.1液压机主要设计参数

(1)拟设计的液压机主要技术参数见表2.1

表2.1液压机技术参数

参数项

参数

公称力(最大负载)

2000KN

工进时液体最大工作压力

25MPa

主缸回程力

400KN

顶出缸顶出力

350KN

主缸滑块行程

700mm

顶出活塞行程

250mm

主缸滑块距工作台最大距离

1100mm

主缸滑块快进速度

0.08m/s

主缸滑块工进最大速度

0.006m/s

主缸快退速度

0.03m/s

顶出活塞顶出速度

0.02m/s

顶出活塞退回速度

0.05m/s

(2)液压机的主要功能

通过液压传动系统传递动力,完成零件的压力成型加工。

(3)液压机的适用范围

液压机主要用于冷挤、校直、弯曲、冲裁、拉伸、粉末冶金、翻边、压装等成型工艺。

2.2液压机工作原理分析

2.2.1液压机的基本组成

液压机是由两个大小不同的液缸组成的,在液缸里充满水或油。

充水的叫“水压机”;

充油的称“油压机”。

两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压强传递给大活塞,将大活塞顶上去。

设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。

于是,小活塞对能够大小不变地被液体向各个方向传递。

大活塞所受到的压强必然也等于P。

若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力截面积是小活塞横截面积的倍数。

从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。

液压机主要由主机、液压控制系统、电气控制系统三部分组成。

其中主机包括工作台、导柱、滑块、上缸、顶出缸等结构;

液压系统由控制元件、执行元件、辅助元件、动力装置、工作介质等组成;

电气控制控制系统主要由继电器、接触器、按钮、行程开关、电器控制柜等组成。

2.2.2液压机的工作原理

(1)液压机主机组成简图2.1

1-滑块2-导柱3-工作台4-安装地基

5-顶出缸6-主缸7-上横梁8-辅助油箱

图2.1液压机主机组成简图

(2)液压机工作原理分析

液压机的动作顺序通过电气系统、液压系统控制,控制顺序框图如图2.2。

图2.2液压机控制顺序图

从上面的控制顺序框图可以看出,液压机的工作原理由电气控制系统控制液压系统,液压控制系统再控制主机工作,主机动作触及行程开关,将信号反馈给电气控制系统,实现循环控制。

(3)液压机工作循环分析

液压机工作循环如图2.3所示。

图2.3液压机工作循环图

液压机工作循环如图2.3(a),滑块在自重的作用下快速下行,碰到行程开关后由快进变为工进,随后进行加压、保压。

保压时间完成后,滑块快速回程,直到回到原来的位置,停止运动;

图2.3(b)表示顶出缸的工作循环过程,主缸快进、工进、保压、退回停止后,顶出缸才运动,将工件顶出。

2.3液压机工艺方案设计

(1)控制方式的选择

采用液压系统与电气系统相结合的控制方式。

具有调整、手动、半自动三种工作方式,可实现定压、定程两种加工工艺;

(2)液压系统:

液压油路采用封闭式回路,供油方式选用变量泵供油,液压控制元件采用插装阀形式。

针对液压机快进时供油不足以及工进时的高压特性,系统应设有补油和卸压装置;

(3)电气控制:

采用继电器、行程开关、接触器、手动按钮等元件进行手动、半自动控制;

(4)主机:

主机结构形式采用“三梁四柱”的形式,主缸和顶出缸为执行元件。

2.4液压机总体布局方案设计

总体布局如图2.4所示

1-主机2-液压油管3-控制台

4-插装阀5-液压泵装置6-液压油箱7-电气控制柜

图2.4液压机总体布局简图

图2.4为液压机整体布局简图,分为三个部分,即:

主机、液压系统、电气控制系统。

液压系统的所有部件都集中安装在液压油箱上,使液压站布局结构变得紧凑。

电气控制元件集中设计在电气柜中。

启动、停止、快进、顶出、调整、等控制按钮设置在控制台上,方便及时操作。

2.5液压机零部件设计

2.5.1主机载荷分析

参考表2.1,液压机的最大工作负载为2000KN,主缸回程力为400KN,顶出缸顶出力为350KN。

由于工作时的负载远大于其它工况时的负载,因此在进行载荷设计时,取负载2000KN对液压机进行受力计算。

液压机结构形式为“三梁四柱”式,工进加压的负载作用在横梁和导柱上,受载时横梁受压,导柱受拉,受力如图2.5所示

F-负载T-导柱拉力

图2.5横梁、导柱受力图

2.5.1.1导柱设计

材料选择:

导柱在工作过程中主要承受拉力,材料必须具备较高的抗拉强度。

导柱材料选择45圆钢,也可选用锻件形式。

热处理要求:

导柱除了承受拉力之外,外圆柱表面与滑块之间还存在摩擦力。

为了减少导柱表面的磨损,通过表面热处理提高表面硬度增加表面耐摩性。

总的热处理工艺为调质和表面淬火。

理论设计计算:

液压机的最大负载约为2000kN,通过力传递后,最后由四根导柱承受2000kN的拉力,作用在每根导柱上的拉力为500kN。

由许用拉应力公式(2.1),可计算导柱的安全直径D。

(2.1)

式中:

—许用应力;

取45钢=80~100MPa;

F—轴向拉力;

A—横截面积。

即:

圆整后取导柱直径D=90mm,为了防止四根导柱因瞬间的受力不均而被破坏,导柱直径可适当加大,取D=110mm。

2.5.1.2横梁设计

横梁工作时的受力为弯曲力,材料应具有一定的抗弯强度。

选用45钢,毛坯采用锻件。

横梁进行调质处理。

理论计算校核:

横梁受力可以简化为简直梁,中间受载的情形,如图2.6所示。

图2.6横梁滑块受力简图

初步确定横梁的长、宽、高尺寸分别为1310、1045、575mm,截面为矩形。

在负载作用下的剪力和弯矩如图2.7所示。

图2.7(a)剪力图(b)弯矩图

由弯矩图2.7(b)可知,横梁C点1—1截面弯矩最大,该截面是危险截面。

为了保证横梁能够正常工作,必须对该截面进行强度校核。

正应力计算公式为:

(2.2)

—最大弯曲正应力;

—最大弯矩;

—抗弯截面系数()。

矩形截面抗弯系数W计算公式为:

(2.3)

—矩形截面的宽;

—矩形截面的高。

45钢的弯曲许用应力[]=100MPa,而横梁的最大弯曲应力=8.1MPa,远小于材料的许用应力,经过校核,设计尺寸满足要求。

2.5.2主机工作台设计

液压机工作台主要受压,由于工作台不是很高,刚度要求可以满足,因此在设计计算时只要进行抗压强度的校核即可,校核过程从略。

工作台主要受压,材料选用铸钢45。

工艺要求:

机械加工时,工作台表面做成T形槽,如图2.8所示。

图2.8工作台T形槽

2.5.3控制台设计

控制台主要用于安装控制按钮,不承受动载荷,强度要求不是很高,满足使用要求即可,材料选用Q235A。

加工工艺:

控制台的制作加工采用焊接方式完成。

外形设计:

控制台外形尺寸设计应考虑操作方便。

外形简图如图2.9所示。

1-控制按钮2-控制面板3-控制台底座

图2.9液压机控制台外形简图

第三章液压机液压系统设计

3.1液压传动的优越性概述

科学技术迅猛发展的今天,液压传动技术随之有了比较完善、成熟的理论基础。

目前液压传动技术正向着高压、高速、大功率、高效、低噪音、经久耐用、高度集成化的方向发展。

(1)液压传动优越性

1)液压元件布局灵活;

2)液压传动操作控制方便,可实现无级调速;

3)液压传动容易实现直线传动,可以进行自动过载保护;

4)液压传动采用电液控制相结合的控制方式,可实现自动化控制,还可实现远程控制;

5)液压系统中液压元件的磨损比机械传动小很多,液压油除了作为传动介质外还起到了润滑的作用,延长了液压系统中液压元件的使用寿命。

(2)液压传动不足

1)液压传动沿程、局部阻力损失比较大;

2)液压传动压力高时泄漏较大,效率降低,处理不好油液还会对环境构成污染;

3)液压介质的泄漏和可压缩性使系统没有严格的传动比;

4)液压传动存在的液压冲击、气蚀、困油现象影响了设备的安全工作和使用寿命;

5)液压元件制造精度高,成本贵,系统故障不容易排除,维护技术成本高;

6)液压系统工作环境受温度影响较大,不宜在很高和很低的温度条件下工作。

3.2液压系统设计要求

3.2.1液压机负载确定

参考液压机技术参数表2.1可知,液压机的最大工作负载为2000KN,工进时液体最大压力为25MPa,由此确定液压机设计负载为2000KN型液压机。

3.2.2液压机主机工艺过程分析

压制工件时主机的工艺过程:

按下启动按钮后,主缸上腔进油,横梁滑块在自重作用下快速下行,此时会出现供油不足的情况,补油箱对上缸进行补油。

触击快进转为工进的行程开关后,横梁滑块工进,并对工件逐渐加压。

工件压制完成后进入保压阶段,让产品稳定成型。

保压结束后,转为主缸下腔进油,滑块快速回程,直到原位后停止。

横梁滑块停止运动后,顶出缸下腔进油,将工件顶出,工件顶出后,顶出缸上腔进油,快速退回。

3.2.3液压系统设计参数

液压系统设计参数可参考表2.1

最大负载:

2000KN;

工进时系统最大压力:

主缸回程力:

400KN;

顶出缸顶出力:

主缸滑块快进速度:

0.08m/s;

主缸最大工进速度:

主缸回程速度:

0.03m/s;

顶出缸顶出速度:

顶出缸回程速度:

3.3液压系统设计

3.3.1液压机主缸工况分析

3.3.1.1主缸速度循环图

根据液压机系统设计参数及表2.1中主缸滑块行程为700mm,可以得到主缸的速度循环图如下:

图3.1主缸速度循环图

3.3.1.2主缸负载分析

液压机启动时,主缸上腔充油主缸快速下行,惯性负载随之产生。

此外,还存在静摩擦力、动摩擦力负载。

由于滑块不是正压在导柱上,不会产生正压力,因而滑块在运动过程中所产生的摩擦力会远远小于工作负载,计算最大负载时可以忽略不计。

液压机的最大负载为工进时的工作负载。

通过各工矿的负载分析,液压机主缸所受外负载包括工作负载、惯性负载、摩擦阻力负载,即:

F=Fw+Ff+Fa(3.1)

F—液压缸所受外负载;

Fw—工作负载;

Ff—滑块与导柱、活塞与缸筒之间的摩擦阻力负载,启动时为静摩擦阻力负载,启动后为动摩擦力负载;

Fa—运动执行部件速度变化时的惯性负载。

(1)惯性负载Fa计算

计算公式:

Fa=(3.2)

G—运动部件重量;

g—重力加速度9.8m/;

—时间内的速度变化量;

—加速或减速时间,一般情况取=0.01~0.5s。

查阅相同型号的液压机资料,初步估算横梁滑块的重量为30KN。

由液压机所给设计参数可及:

=0.08m/s,取=0.05s,代入公式3.2中。

Fa==4898N

(2)摩擦负载Ff计算

滑块启动时产生静摩擦负载,启动过后产生动摩擦负载。

通过所有作用在主缸上的负载可以看出,工作负载远大于其它形式的负载。

由于滑块与导柱、活塞与缸体之间的摩擦力不是很大,因而在计算主缸最大负载时摩擦负载先忽略不计。

(3)主缸负载F计算

将上述参数Fa=4898N、Fw=2000000N代入公式3.1中。

F=2000000+4898=2004898N

3.3.1.3主缸负载循环图

(1)主缸工作循环各阶段外负载如表3.1

表3.1主缸工作循环负载

工作循环

外负载

启动

F=f静+Fa

≈5KN

横梁滑块快速下行

F=f动

忽略不计

工进

F=f动+Fw

≈2000KN

快速回程

F=f回+F背

≈400KN

注:

“f静”表示启动时的静摩擦力,“f动”表示启动后的动摩擦力。

(2)主缸各阶段负载循环如图3.2

图3.2主缸负载循环图

3.3.2液压机顶出缸工况分析

3.3.2.1顶出缸速度循环图

根据液压机系统设计参数和表2.1中顶出缸活塞行程为250mm,得到顶出缸的速度循环图如下:

图3.3顶出缸速度循环图

3.3.2.2顶出缸负载分析

主缸回程停止后,顶出缸下腔进油,活塞上行,这时会产生惯性、静摩擦力、动摩擦力等负载。

由于顶出缸工作时的压力远小于主缸的工况压力,而且质量也比主缸滑块小很多,惯性负载很小,计算时可以忽略不计;

同理摩擦负载与顶出力相比也很小,也可不计;

工件顶出时的工作负载比较大,计算顶出缸的最大工作负载时可以近似等于顶出力。

将参数代入公式3.1计算顶出缸的最大负载。

F=Fw=350000N

Fw—顶出力;

3.3.2.3顶出缸负载循环图

(1)顶出缸工作循环各阶段外负载如表3.2

表3.2顶出缸工作循环负载

F=F静+Fa

顶出缸顶出

F==f动+Fw

≈350KN

快速退回

F=f动+F背

≈8KN

(2)顶出缸各阶段负载循环如图3.4

图3.4顶出缸负载循环图

3.3.3液压系统原理图拟定

3.3.3.1液压系统供油方式及调速回路的选择

液压机工进时负载大,运动速度慢,快进、快退时的负载相对于工进时要小很多,但是速度却比工进时要快。

为了提高液压机的工作效率,可以采用双泵或变量泵供油的方式。

综合考虑,液压机采用变量泵供油,基本油路如图3.5所示。

由于液压机工况时的负载压力会逐步增大,为了使液压机处于安全的工作状态,调速回路采用恒功率变量泵调速回路。

当负载压力增大时,泵的排量会自动跟着减小,保持压力与流量的乘积恒为常数,即:

功率恒定,如图3.6所示。

1-液压缸2-油箱3-过滤器4-变量泵5-三位四通电磁换向阀

图3.5液压机基本回路图

图3.6恒功率曲线图

3.3.3.2液压系统速度换接方式的选择

液压机加工零件的过程包括主缸的快进、工进、快退和顶出缸的顶出、快速回程。

采用什么样的方式进行速度的安全、准确换接是液压机稳定工作的基础。

为了达到控制要求,液压系统的速度换接通过行程开关控制。

这种速度换接方式具有平稳、可靠、结构简单、行程调节方便等特点,安装也很容易。

3.3.3.3液压系统原理图

液压系统采用插装集成控制系统,该控制系统具有密封性好、流通能力大、压力损失小、易于集成等优点。

液压机系统控制原理如图3.7所示。

1、2、6、18、15、10、11-先导溢流阀1S、2S、3S-行程开关3、7-缓冲阀14单向阀

4、5、8、9、12、13、16、17、19、20-电磁换向阀21-补油邮箱22-充液阀23、24-液压缸25压力表F1、F2、F3、F4、F5、F6、F7、F8、F9、F10-插装阀26-变量泵27-过滤器28、29、30、31梭阀

图3.7液压机插装阀控制系统原理图

3.3.3.4液压系统控制过程分析

整个液压控制系统包括五个插装阀集成块,插装阀工作原理分析如下:

F1、F2组成进油调压回路,其中F1为单向阀,用于防止系统中液压油倒流回泵,F2的先导溢流阀2用于调整系统的压力,先导溢流阀1用于限制系统的最高压力,缓冲阀3与电磁换向4用于液压泵卸载和升压缓冲;

F3、F4组成主缸23油液三通回路,先导溢流阀6是用于保证主缸的安全阀,缓冲阀7与电磁换向阀8用于主缸上腔卸压缓冲;

F5、F6组成主缸下腔油液三通回路,先导溢流阀11用于调整主缸下腔的平衡压力,先导溢流阀10为主缸下腔安全阀;

F7、F8组成顶出缸上腔油液三通回路,先导溢流阀15为顶出缸上腔安全阀,单向阀14用于顶出缸作液压垫,活塞浮动时上腔补油;

F9、F10组成顶出缸下腔油液三通回路,先导溢流阀18为顶出缸下腔安全阀。

除此之外,进油主阀F3、F5、F7、F9的控制油路上都有一个压力选择梭阀,用于保证锥阀关闭可靠,防止反压开启。

3.3.3.5液压机执行部件动作过程分析

液压机主缸、顶出缸工作循环过程分析如下:

(1)主缸

1)启动——按下启动按钮,所有电磁铁处于失电状态,三位四通电磁阀4阀芯处于中位。

插装阀F2控制腔经阀3、阀4与油箱接通,主阀开启。

液压泵输出的油液经阀F2流回油箱,泵空载启动。

2)主缸滑块快速下行——电磁铁1Y、3Y、6Y得电,这时插装阀F2关闭,F3、F6开启,泵向系统供油,输出油液经阀F1、F3进入主缸上腔。

主缸下腔油液经阀F6快速流回油箱。

滑块在自重作用下快速下行,这时会因为下行速度太快,泵的输出流量来不及填充上腔而在上腔形成负压。

充液阀21打开,上部油箱对上腔进行补油,滑块的快速下行。

3)滑块减速下行——当滑块行至一定位置触动行程开关2S后,电磁铁6Y失电,7Y得电,插装阀F6控制腔先导溢流阀11接通,阀F6在阀11的调定压力下溢流,主缸下腔会产生一定的背压。

主缸上腔的压力这时会相应升高,充液阀21关闭。

主缸上腔进油仅为泵的输出流量,滑块减速下行。

4)工进——当滑块减速行进一段距离后接近工件,主缸上腔的压力由压制负载决定,主缸上腔的压力会不断升高,变量泵输出流量会相应自动减少。

当主缸上腔的压力达到先导溢流阀2的调定压力时,泵的输出流量全部经阀F2溢流,此时滑块停止运动。

5)保压——当主缸上腔的压力达到所需要求的工作压力后,电接点压

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2