高中物理基础知识和基本公式总结课件Word文件下载.docx

上传人:b****2 文档编号:3651866 上传时间:2023-05-02 格式:DOCX 页数:28 大小:118.13KB
下载 相关 举报
高中物理基础知识和基本公式总结课件Word文件下载.docx_第1页
第1页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第2页
第2页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第3页
第3页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第4页
第4页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第5页
第5页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第6页
第6页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第7页
第7页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第8页
第8页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第9页
第9页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第10页
第10页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第11页
第11页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第12页
第12页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第13页
第13页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第14页
第14页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第15页
第15页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第16页
第16页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第17页
第17页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第18页
第18页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第19页
第19页 / 共28页
高中物理基础知识和基本公式总结课件Word文件下载.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高中物理基础知识和基本公式总结课件Word文件下载.docx

《高中物理基础知识和基本公式总结课件Word文件下载.docx》由会员分享,可在线阅读,更多相关《高中物理基础知识和基本公式总结课件Word文件下载.docx(28页珍藏版)》请在冰点文库上搜索。

高中物理基础知识和基本公式总结课件Word文件下载.docx

VS/2=

③连续相等的时间T内,相邻的两个位移之差是一个定值。

Δs=aT2

④v0=0的匀加速直线运动

.时间等分:

1s末、2s末、3s末……

V1:

V2:

V3…=1:

2:

3…

S1:

S2:

S3…=12:

22:

32…

第1s内、第2s内、第3s内……

SⅠ:

SⅡ:

SⅢ…=1:

3:

5…

位移等分:

通过连续相等的位移

V1:

V3…=1:

t1:

t2:

t3…=1:

-1):

-

)…

(3)自由落体运动:

V0=0a=g

v=gt

h=

gt2

v2=2gh

落地时间t=

(4)竖直上抛运动:

V0≠0方向竖直向上

a=g

上升的最大高度:

H=

落地时间:

t=

3.平抛运动:

水平方向:

匀速直线运动;

竖直方向:

自由落体运动。

实质:

加速度为g的匀变速曲线运动

t时刻的速度

Vx=V0

Vy=gt

V=

方向:

tgθ=Vy/Vx

t时刻的位置

x=V0t

y=

飞行时间t=

与抛出时的水平初速度v0无关,只与抛出高度h有关。

水平位移s=V0t=V0

——由V0和h共同决定。

4.匀速圆周运动:

速率大小不变,但方向时刻变化。

(1)线速度v=

=2πrf=2πrn

角速度ω=

=2πf=2πn

关系:

v=ωr

(2)向心加速度:

a=

=ω2r

a的大小不变,方向时刻指向圆心。

故,匀速圆周运动是变加速运动。

向心力:

F=m

=mω2r

(3)物体做匀速圆周运动的条件:

F合=F向

F合>F向时,近心运动

F合<F向时,离心运动

(4)物体在竖直平面内做圆周运动的条件:

绳系小球(无支撑):

最高点的速度:

Vmin=

最低点的速度:

Vmin=

杆端固定小球(有支撑):

Vmin=0

5.简谐运动:

(1)回复力:

F=-kx方向:

与物体偏离平衡位置位移x的方向相反,而总是指向平衡位置。

加速度:

a=-

方向与F相同

(2)简谐振动系统:

T、f(固有周期、固有频率)与振幅A无关,由振动系统本身决定。

弹簧振子:

回复力由弹簧力提供。

单摆:

回复力由重力的切向分力提供。

周期T与振幅A、摆球质量m无关。

(单摆的等时性)

T=2π

(3)受迫振动:

稳定后的f受迫与驱动力的f驱相同。

当f驱=f固时,发生共振——物体做受迫振动的振幅最大。

6.机械波:

(1)波的形成:

波源处质点的振动带动相邻质点发生振动,每一个质点只在各自的平衡位置附近振动,并不随波迁移。

同一时刻不同质点的位移不同,形成波形。

形成条件:

有波源、有介质。

波的种类:

横波:

有波峰、波谷

纵波:

有疏部、密部

(2)波的传播:

波的传播是机械振动在介质中的传播,也是波形的平移,也是能量的一种传播形式。

波在一个周期内传播一个波长,波形重复出现一次。

(空间周期性反映着时间周期性)

V=λ/T=λf

波速V由介质本身的性质决定,频率由波源决定。

波从一种介质进入另一种介质时,f不变,v改变,导致λ改变。

机械波在固体中传播最快,在气体中传播最慢。

(3)质点的振动特点:

沿着波的传播方向:

上坡下下坡上

每一个质点的起振方向都与波源处质点的起振方向相同。

后边质点的振动总比前面质点的振动晚一些。

相距nλ的两个质点振动总是同步,相距nλ+1/2λ的两个质点振动总是反向。

(4)波的干涉——波的叠加的特例

波的干涉的必要条件:

两列波的f相同

干涉图样:

有的质点的振动总是加强,有的质点的振动总是减弱,并且振动加强区与减弱区互相隔开。

振动加强点的振幅A1+A2,振动减弱点的振幅A1-A2

(5)波的衍射:

发生明显衍射的条件:

障碍物的尺寸、缝、孔的宽度D与波长λ差不多或比λ更小。

7.常用的一些结论:

(1)末速度为零的匀减速运动反过来可作为初速度为零的匀加速运动处理。

(2)注意"

刹车陷阱"

给出的时间大于滑行时间。

(3)运动图象:

V-t图中:

面积=位移

斜率=加速度

s-t图中:

斜率=速度

(4)物体沿光滑斜面下滑a=gsinθ

物体沿斜面匀速下滑μ=tgθ

物体在水平面上滑行a=-μg

(5)追击问题中,二者速度相等时,间距取极值。

(极大或极小)

(6)一般a=0时,V最大。

(7)汽车启动问题:

发动机的功率P=F牵V

额定功率启动时,P不变,变加速运动。

V↑→F↓→a↓→F=f时,a=0,V最大,Vm=

→以Vm匀速运动

恒力启动时,F不变,先匀加速,再变加速,后匀速。

V↑→a不变,P↑→P=P额时,P不变→F↓→F=f时,a=0,V最大,Vm=

→以Vm匀速运动

(8)天体问题:

地表处F引≈mg

g=

--黄金代换

中心天体的质量:

G

=m(

)2r→M=

星体质量:

M=

星体密度:

ρ=

=

(9)人造卫星的运动:

计算模型:

F引=F向

结论:

a=

→a∝

v=

→v∝

ω=

→ω∝

T=

→T∝

(a、v、ω、T)由r唯一确定,牵一发而动全身。

(10)第一宇宙速度:

v1=

=7.9km/s--是卫星稳定运行的最大速度,也是卫星的最小发射速度。

(环绕速度)

第二宇宙速度:

v2=11.2km/s(脱离速度)

第三宇宙速度:

v3=16.7km/s(逃逸速度)

(11)卫星的变轨问题:

V增大,F引<F向,离心运动,转向高轨道。

V减小,F引>F向,近心运动,转向低轨道。

(12)同步卫星:

ω与地球自转角速度相同。

同步轨道只有一条,在赤道平面内,距赤道表面约36000km。

稳定运行的卫星里的物体,处于完全失重状态,与重力有关的实验都不能做,与重力有关的一切现象都消失。

(13)纸带分析方法:

某点的瞬时速度:

vt/2=v

加速度:

a=ΔS/T2

或a=(s4—s1)/3T2

(14)由波的图象讨论波的传播问题时,要注意波的传播的“双向性”、“周期性”。

当传播时间t<

周期T时,不考虑“周期性”。

当传播时间t>

周期T时,考虑“周期性”。

三、解决力学问题常用的思维

1.解决力学问题的五大工具:

牛二定律:

F合=ma

动量定理:

F合t=Δp

动能定理:

F合S=ΔEk

动量守恒定律:

系统不受外力或所受外力之和为零时,

p初=p末或Δp=0

机械能守恒定律:

只有重力和弹簧力做功时,E初=E末

或ΔE=0或ΔE增=ΔE减

2..三个角度看问题:

用牛二定律分析情景,确定问题的性质。

从动量、能量角度去寻找解题的途径。

用牛二定律分析:

F合=0,则a=0

F合变化,则a变化

F合增大,则a增大

F合减小,则a减小。

F合恒定,则a恒定

用动量、能量分析:

优先使用守恒律(动量、能量守恒)。

一般涉及时间t时,用动量定理。

涉及位移s时,用动能定理。

3.常用的功能关系:

功是能量转化的量度。

(1)合力做功:

W合=ΔEK(动能定理)

(2)重力做功:

WG=mgΔh=-ΔEP(重力做功与路径无关)

重力做正功,重力势能减少。

重力做负功,重力势能增加。

(3)功能关系W非重非弹=ΔE

摩擦生热Q=fΔs=-ΔE

(4)分子力做功:

W>0,分子势能减少。

W<0,分子势能增加。

(5)电场力做功:

与路径无关。

W=qU

W>0,电势能减少。

W<0,电势能增加。

(6)安培力做功:

是机械能与电能转化的量度。

4.常用的思维模式

(1)平衡问题求解策略:

摩擦平衡找临界;

三力平衡几何法;

多力平衡化二力;

正交分解列方程。

(2)几个力平衡,则其中一个力必定与其它力的合力平衡。

(3)三个大小相等的力平衡,夹角互成1200。

(4)两个力的合力:

F1-F2≤F合≤F1+F2,F合随夹角的增大而减小。

(5)三个力的合力:

可能0≤F合≤F1+F2+F3

(6)合力不变时:

两个相等的分力的夹角越大,分力越大。

(7)绳端速度分解法:

绳端的速度常分解为沿着绳、垂直于绳两个方向的分速度。

(8)物体脱离约束的条件:

约束力=0

(9)冲量的计算:

恒力的冲量:

由定义计算I=Ft

变力的冲量:

由效果计算I=ΔP

一对力的冲量大小相等、方向相反,矢量和为零。

(10)功的计算:

恒力的功:

由定义计算W=FS

变力的功:

由效果计算W=ΔEK

由功率的定义W=Pt计算

摩擦力做功与路径有关,恒力做功与路径无关。

一对力做功的代数和不一定为零。

(11)功率的计算:

平均功率P=

P=FV(F与V共线)

瞬时功率P=FV(F与V共线)(12)动量与动能的关系:

EK=

(13)与动量、能量有关的问题模型

反弹:

I=m(v1+v2)

落地:

注意重力的冲量是否可以忽略。

一般Δt<0.01s可忽略。

抛物、打击:

冲量:

I=mv-0

做功:

W=

mv2-0

爆炸:

动量守恒,动能增加。

因为有化学能转化为动能。

弹开:

0=P1+P2→P1=-P2→m1v1=-m2v2→分开时,质量大的速度小,质量小的速度大。

两体系统动量守恒:

ΔP=0→ΔP1+ΔP2=0→ΔP1=-ΔP2→I1=-I2

人船模型:

应用平均动量守恒求位移

m(L-s)=Ms→s=

L

s--船的位移L--船长

(14)碰撞问题:

动量守恒,动能不增加。

弹性碰撞:

动量守恒,动能守恒。

动碰静时:

大碰小,齐向前。

小碰大,向后转。

质量相等时:

速度互换。

非完全弹性碰撞:

动量守恒,动能不守恒。

完全非弹性碰撞:

动量守恒,动能损失最大。

类完全非弹性碰撞问题:

细线绷紧、滑块上车、子弹打木块等。

对系统:

m1v1+m2v2=(m1+m2)V

对m1:

-Ft=m1V-m1v1

-Fs=1/2m1V2-1/2m1v12

对m2:

Ft=m2V-m2v2

Fs=1/2m2V2-1/2m2v22

系统损失的机械能

Q=fΔs=-ΔE=1/2m1v12+1/2m2v22-1/2(m1+m2)V2

(15)轻弹簧、轻绳、轻杆:

轻绳只能提供拉力。

轻杆既能提供拉力,又能提供支持力。

但要注意:

轻杆的弹力不一定沿着杆,必须结合物体的运动状态考虑。

轻弹簧的弹力变化需要时间,不能发生突变。

(16)高中阶段涉及到的势能:

重力势能:

有定量的表达式,Ep=mgh

弹性势能:

无定量表达式

分子势能:

无定量表达式

电势能:

热学部分

1.油膜法估测分子直径:

d=

2.微观量估算时用到的分子的两个模型:

球体模型:

V=

π(

)3

立方体模型:

V=D3

其中D--分子直径

3.阿伏加德罗常数:

NA=6.02×

1023mol–1——联系宏观量和微观量的桥梁。

4.布朗运动:

液体中悬浮的固体小颗粒的无规则运动。

影响因素:

悬浮颗粒越小、液体的温度越高,布朗运动越明显。

产生原因:

液体分子对悬浮小颗粒的撞击作用不平衡。

布朗运动的无规则性间接反映了液体分子运动的无规则性。

5.分子力:

分子间同时存在相互作用的引力和斥力,引力和斥力都随分子间距的增大而减小,但斥力比引力减小的更快。

平衡距离处:

引力=斥力,分子力为零,分子势能最小。

6.内能:

物体内所有分子动能和分子势能的总和。

与物体的温度、体积、质量、状态等有关。

温度是物体内分子平均动能的标志。

分子势能的变化与体积的变化有关。

内能:

U=nEk+Epn——分子总数

分子平均动能是一个统计学量,温度升高,分子平均动能增大,物体内动能大的分子数增多,并不是每一个分子的动能都增大。

7.改变物体内能的途径:

作功和热传递

8.热力学第一定律:

ΔU=Q+W注意符号法则

9.热力学第二定律的两种表述:

(1)热量不可能自发地从高温物体传到低温物体而不引起其它变化。

——指明了热传递过程的方向性

(2)不可能从单一热源吸热而全部用来对外做功而不引起其它变化。

——指明了机械能与内能转化的方向性。

10.第一类永动机违反了热力学第一定律。

第二类永动机违反了热力学第二定律。

11.理想气体的分子势能为零。

对气体:

内能看温度,做功看体积,吸、放热由热力学第一定律确定。

12.气体的三个状态常量:

P、V、T的关系

PV/T=C或PV=nRT

13.气体压强的微观解释:

大量气体分子对器壁的频繁碰撞。

电磁学部分

1.电场强度:

定义式:

E=

决定式:

点电荷场强公式:

E=k

匀强电场的场强:

(1)由E=

、U=

、C=

等可推出E=

,可见,两平行金属板间的匀强电场的场强E由电荷的面密度决定。

(2)匀强电场中,沿任意直线电势变化均匀。

可用“等分法”研究电场。

2.电势差:

UAB=

UAB=φA-φB

匀强电场中,U=Ed--沿场强方向两点的电势差

3.电容器:

电容C=

(定义式)

带电量Q=CU

平行板电容器的电容:

C=

1.电容器充电后与电源相连,则电压不变。

电容器充电后与电源断开,则电荷量不变。

2.电容器在电路中,随两端电压的变化而进行充、放电,稳定后电容器是断路,与他相连的电阻是摆设。

电压与并联的电阻两端电压相同。

4.带电粒子在电场中的运动:

加速:

qU=

mv02→v0=

(由静止开始加速)

偏转:

匀速运动L=V0t

由静止开始匀加速

竖直偏移:

y=

at2=

)2

U

速度:

Vx=V0

Vy=at

偏角:

tgθ=

U

带电粒子从中间进入偏转电场,飞出时,速度的反向延长线,通过电场中心。

5.电流的宏观定义:

I=

电流的微观定义:

I=nqvs(柱体微元)

6.部分电路欧姆定律:

I=

闭合电路欧姆定律:

或E=U+Ir

路端电压:

U=E–Ir→纯电阻电路U=IR

非纯电阻电路U≠IR

7.路端电压随外电阻的增大而增大,随外电阻的减小而减小。

R↑→I↓→U↑=E-Ir

断路时,R=∞→I=0→U=E

短路时,R=0→U=0→E=Ir→I短=

8.闭合电路中的能量关系:

EI=IU+I2r

电源总功率:

P总=EI

电源内阻消耗功率:

P内=I2r

电源输出功率:

P出=UI=EI-I2r

对纯电阻电路P出=UI=I2R,当R=r(E、r不变)时,电源输出功率最大,

Pm=

9.电阻定律:

R=ρ

金属导体的ρ随温度升高而增大;

半导体的ρ随温度的升高而减小;

超导体的ρ=0

10.电功:

W=UIt——纯电阻W=I2Rt=

t

电功率:

P=UI——纯电阻P=I2R=

非纯电阻电路,电能≠Q,应从能量角度考虑。

11.电路的设计:

供电电路:

限流电路、分压电路

选择方法:

大控小,用限流。

(用全值电阻大的滑变控制小电阻)

小控大,用分压。

(用全值电阻小的滑变控制大电阻)

连续可调,用分压。

(要求电流表、电压表的读数从零开始连续变化)

测量电路:

电流表内接、电流表外接

选择方法:

(1)好表内接误差小。

注:

比值大者为好表。

(2)“兄弟原则”:

RA、RX大小差不多用电压表分开,相差很多则不分。

1.考虑电表内阻的影响时,电表可看作是一个有“自报”功能的电阻;

已知电表的内阻时则更是一个“宝贝”,既是电流表,又是电压表,还是一个具有“自报”功能的电阻。

2.电流表、电压表的选用:

(1)不超量程

(2)接近满偏

3.滑变的选用:

在能完成任务的前提下,选阻值小的便于调节。

分压、限流都可用时,限流优先。

12.磁感应强度:

B=

(I⊥B)方向:

与磁场方向相同。

13.磁通量:

Φ=BS(B⊥S)

14.带电粒子在磁场中的运动--匀速圆周运动

f洛=F向→Bqv=m

→回旋半径r=

回旋周期T=

求解策略:

速度垂线交圆心,几何关系求半径,运动时间

T

应用:

速度选择器:

粒子沿直线通过正交的匀强电磁场

f洛=F电→Bqv=qE→v=

回旋加速器:

磁场回旋,电场加速,金属盒屏蔽电场。

交变电场的变化周期=粒子的回旋周期

质谱仪:

经电场加速、磁场回旋后,荷质比不同的粒子的回旋半径不同。

磁流体发电机:

稳定后f洛=F电

霍尔效应:

通电金属导体放在磁场中,金属中的自由电子受洛仑兹力而向金属导体的上下两个侧面聚集,稳定后f洛=F电,形成霍尔电势差。

15.电磁感应:

(1)感应电动势:

E=n

ΔS变化时,E=B

ΔB变化时,E=S

导体切割磁感线时,E=BLV

线圈转动时,Em=NBSω

转杆发电机,E=

BωL2

(2)感应电流:

"

右手定则"

楞次定律:

阻碍Φ的变化。

阻碍导体与磁体的相对运动。

(3)感应电量的求法:

Δq=IΔt=

Δt=

由动量定理,安培力的冲量计算。

F安t=BILt=BLQ

16.冲击电流的冲量:

17.自感电动势:

阻碍引起自感的电流的变化,大小与电流变化的快慢、自感系数L成正比。

18.平行双杆的运动:

轨道宽度相同时,在平行双杆所围面积不变时,趋于稳定。

类似于完全非弹性碰撞。

动量守恒。

(系统所受安培力的和为零)

轨道宽度不同时,两杆所受安培力大小不同,动量不守恒。

可由动量定理求解。

19.正弦交流的产生:

线圈在匀强磁场中匀速转动

S⊥B时(中性面):

Φ最大,但e=0,i=0。

S∥B时:

Φ=0,但e最大,i最大。

感应电动势的最大值:

Em=nBSω

20.正弦交流的有效值:

U=

I=

交流有效值的计算:

交流与直流在相等的时间内、通过相同的电阻、产生相等的热量,所需的直流值等于交流的有效值。

——其它交流的有效值必须严格按照有效值的定义计算。

(I2RT=一个周期内产生的总热量)

交流的“四值”:

(1)最大值(Um、Im):

反映交流的变化范围

(2)有效值(U、I):

反映交流产生的效果

(3)瞬时值(e、I、u):

反映交流在每一时刻的数值

(4)平均值:

一般求感应电量时用Δq=IΔt=

Δt=

21.理想变压器:

变压比:

功率关系:

P输入=P输出→副线圈只有一匝时

=

副线圈有多匝时:

IU=I1U1+I2U2+I3U3+……

变压器只能改变变化的电压,不改变T、f。

22.远距离输电:

输电功率:

P=UIU——输电功率I——输电电流

输电线上的能量损失:

Δp=I2R

输电线上的电压损失:

ΔU=IR

23.麦克斯韦电磁场理论的两大支柱:

变化的磁场产生电场;

变化的电场产生磁场;

均匀变化的场产生稳定的场。

24.电磁波是横波;

不需介质传播;

真空中的速度:

c

介质中的速度:

v=λf

25.比值法定义的物理量:

、U=

、C=

、B=

等,大小可用比值去量度,但却由本身的性质决定。

26.电阻、电感、电容对交流都有阻碍作用。

电阻:

电学公式仍然适用于交流,但必须用交流的有效值。

电感:

L越大、f越大,感抗越大。

通直流、阻交流,通低频、阻高频。

电容:

C越大、f越大,容抗越小。

通交流、隔直流,通高频,阻低频。

光学部分

一、几何光学

1.平面镜“视场”问题的思维方法:

(1)利用成像的对称性把光路拉直,相当于通过平面镜这个"

窗口"

看物体。

(2)利用光路的可逆性分析。

2.光的折射定律:

n1sini=n2sinr

光对真空的折射率:

n=

3.视深:

h=

H

4.全反射的条件:

(1)光从光密射入光疏介质

(2)入射角i≥临界角C

临界角sinC=

5.光的色散:

表明同一种介质对不同色光的折射率不同,对红光的折射率最小,对紫光的折射率最大。

6.光通过平行玻璃砖,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2