强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx

上传人:b****1 文档编号:3740688 上传时间:2023-05-02 格式:DOCX 页数:97 大小:70.44KB
下载 相关 举报
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第1页
第1页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第2页
第2页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第3页
第3页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第4页
第4页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第5页
第5页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第6页
第6页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第7页
第7页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第8页
第8页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第9页
第9页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第10页
第10页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第11页
第11页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第12页
第12页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第13页
第13页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第14页
第14页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第15页
第15页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第16页
第16页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第17页
第17页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第18页
第18页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第19页
第19页 / 共97页
强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx_第20页
第20页 / 共97页
亲,该文档总共97页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx

《强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx(97页珍藏版)》请在冰点文库上搜索。

强烈推荐80万吨年汽柴油加制氢联合装置可研报告Word格式文档下载.docx

直到两塔的压力基本相等时,结束二均降压过程。

4)三均降压过程。

二均降压结束后,A塔又通过程控阀与刚完成四均升步骤的F塔相连进行均压,这时A塔死空间内的高压氢气就接着均入F塔,得以继续回收。

直到两塔的压力基本相等时,结束三均降压过程。

5)四均降压过程。

三均降压结束后,A塔又通过程控阀与刚完成冲洗再生的G塔相连进行均压,这时A塔死空间内的高压氢气就接着均入G塔,得以继续回收。

直到两塔的压力基本相等时,结束四均降压过程。

6顺放过程

四均降压过程结束后,A塔压力已降至0.49MPa.G左右,这时A塔通过程控阀将塔内剩余的部分氢气放入顺放气罐直到压力降至0.22MPa.G左,结束顺放过程。

7逆放过程

顺放过程结束后,A塔压力已降至0.22MPa.G左右,这时,杂质已开始从吸附剂中解吸出来,于是打开逆放程控阀,逆着吸附方向将吸附塔压力降至0.03MPa.G左右。

逆放出的解吸气被送入解吸气缓冲罐。

8冲洗过程

逆着吸附方向,用顺放气罐中的气体经程控阀和调节阀对吸附塔进行冲洗。

使被吸附组分从吸附剂中完全解吸出来。

9)四均升压过程。

冲洗过程结束后,A塔通过程控阀与刚完成三均降压步骤的C塔相连进行均压升压,这时C塔死空间内的高压氢气就流入A塔被回收,同时A塔压力得以上升,直到两塔压力基本相等。

10)三均升压过程。

四均升压过程结束后,A塔通过程控阀与刚完成二均降压步骤的D塔相连进行均压升压,这时D塔死空间内的高压氢气就流入A塔被回收,同时A塔压力得以继续上升,直到两塔压力基本相等。

11)二均升压过程。

三均升压过程结束后,A塔通过程控阀与刚完成一均降压步骤的E塔相连进行均压升压,回收E塔死空间内的高压氢气,同时A塔压力得以继续上升,直到两塔压力基本相等。

12)一均升压过程。

二均升压过程结束后,A塔通过程控阀与刚完成吸附步骤的F塔相连进行均压升压回收H塔死空间内的高压氢气,同时A塔压力得以继续上升,直到两塔压力基本相等。

13产品气升压过程

经连续四次均压升压过程后,A塔压力已升至1.96MPa.G左右,这时用产品氢对吸附塔进行最后的升压,直到使其达到吸附压力。

经过以上步骤后,A塔的吸附剂得到了完全再生,同时又重新达到了吸附压力,因而已可无扰动地转入下一次吸附。

各吸附塔的工作过程与A塔均完全相同,只是在时间上互相错开吸附时间的一半,8个塔交替吸附即可实现连续分离提纯氢气的目的。

第三节装置物料平衡

I、80万吨年加氢精制单元物料平衡

序号

物料名称

收率

数量

备注

Wt%

kgh

td

104ta

一、

入方

1

催化柴油

22.86

25000.00

576.00

20

进装置

2

焦化柴油

41.15

45000.00

1104.00

36

3

焦化汽油

27.43

30000.00

720.00

24

4

氢气(来自制氢)

1.23

1350

32.40

1.08

自制氢来

5

脱盐水

7.32

8000

192

6.4

合计

100.00

109350

2624.4

87.48

二、

出方

精制柴油

63.56

69500

1668

55.6

出装置

汽油

26.98

29500

708

23.6

酸性气

0.69

750

18

0.60

含硫气体

1.01

1100

26.4

0.88

酸性水

7.77

8500

204

6.8

II、15000Nm3紧急放空系统;

(2)循环氢压缩机自动保护联锁系统;

(3)新氢压缩机自动保护联锁系统;

(4)高压进料泵自动保护联锁系统;

(5)反应进料加热炉自动保护联锁系统;

5、主要现场仪表选型及数量

控制室外的仪表主要选用能够与DCS进行数字通讯的智能型变送器(如压力差压变送器)。

测量范围小于1500mm的液位测量仪表,一般采用外(或内)浮筒式液位变送器。

执行器主要采用气动调节阀加电气阀门定位器(或电气转换器)。

部分调节阀亦可配用智能式电子阀门定位器。

流量测量仪表主要采用孔板加差压变送器测量方式,进出装置的物料设置高精度、高质量的计量仪表,如容积式(椭圆齿轮、罗茨、双转子、刮板等),质量式,速度式(如旋涡等),以及超声波流量计,以保证各种进出物料的计量需要。

设置必要的在线分析仪表,对生产过程中的关键参数进行监控,以提高产品收率,保证产品质量。

可燃气体和有毒气体检测报警器选用可直接进DCS系统的仪表,不再设置室内显示仪表。

所有温度测量均采用毫伏直接进DCS的方式,参与控制的温度参数设置架装温度变送器。

6、主要仪表供货来源

6.1.根据国内仪表生产的现状,对于中低压工艺过程的现场仪表(如温度仪表、压力仪表、流量仪表、液位仪表、可燃气体及有毒气体检测报警器等);

普通气动调节阀;

气动和电动单元辅助仪表及仪表盘、箱、柜、台等,选用国内生产且在XXXX物装公司注册的仪表厂家的产品。

6.2.高压节流装置已国产化且经长期使用证明质量比较稳定,所以本装置所有高压节流装置均选用国内产品。

6.3.对于国内目前不能生产或产品质量不稳定的仪表,将考虑从国外购买。

主要引进仪表设备见下表:

计量仪表

容积式流量计

2台

电磁流量计

3台

物位仪表

高压玻璃板液位计

高压外浮筒液位变送器

1台

高压外浮筒液位开关

5台

分析仪表

H2浓度分析仪

1套

O2含量分析仪

执行器

自力式调节阀

高压气动调节阀

14台

高压双闸板气缸闸阀

高压仪表阀门及管配件

1批

第六节主要设备选择

一、主要设备选择

(一)转化炉

1、炉型选择及特点

转化炉为制氢装置的核心设备,转化炉结构形式主要有:

顶烧炉、侧烧炉、阶梯炉和底烧炉等,但目前广泛应用的炉型只有顶烧和侧烧两种,其选择主要取决于下列因素:

--转化炉大小

--应用场合

--燃料种类

转化炉的尺寸是十分重要的。

一般说来,较大的转化炉不宜采用侧烧炉,因其烧嘴过多而常常必需将辐射室分成两个(或更多)炉膛。

顶烧炉因其烧嘴少,结构紧凑,则较适合于大型转化炉。

在燃料种类的适应性方面,侧烧炉只局限于使用燃料气及汽化后的石脑油和液化石油气;

而顶烧炉因其烧嘴型式众多,可以使用各种气体和液体燃料。

根据上述分析,本报告通过对生产规模、燃料种类、催化剂性能要求、换热方案以及施工安装、检修、合金钢用量等多方面的综合比较,并考虑了节省投资、生产稳妥可靠等因素,选择炉型为:

顶部烧嘴供热、对流段横卧于地的结构。

这种炉型具有以下特点:

(1)最适合转化反应的要求。

转化反应为吸热反应,维持反应所需的热量是通过辐射,由烟道气转送到反应物的。

在炉管的进口处,反应物有着较低的平衡温度,而且烃类原料的分压较高,转化反应只受到热传递速率和催化剂活性的限制。

在管子出口处,由于转化已经基本完成,原料的分压较低,吸热量较小。

顶烧炉由于上部火焰温度高,炉管上部的传热速率快,因而较能满足转化反应上部反应速度快,吸热量大的要求。

(2)有利于延长炉管的使用寿命。

根据转化反应需要,最大传热量位于工艺温度较低的管子进口处,其平均热通量是炉管平均热通量的两倍。

在顶烧炉内,由于火焰向下,入口处高热通量不会引起高的金属温度(此处工艺气体温度较低)。

因此炉管表面温度沿轴向分布均匀,使转化炉管的耐高温性能得以充分发挥。

(3)辐射效率高,燃料消耗少

火焰与工艺物流并流的另一优点就是顶烧炉的辐射段效率要比侧烧炉或底烧炉的辐射段效率高。

在顶烧炉内,燃烧产物来自辐射室顶部的混合区。

随着燃烧物的冷却和变重,自然趋于下流。

而在底部燃烧的转化炉内,燃烧产物在辐射室的顶部。

随着燃烧物的向上通过燃烧室,燃烧物冷却下来引起逆向混合,这种逆向混合将引起整个辐射温度的降低,对于给定的转化量,底烧和侧烧转化炉所需的燃料要比顶烧转化炉多。

(4)烧嘴种类众多,燃料的适应性强。

(5)烧嘴数量少,易于操作。

(6)操作弹性大。

(7)对流段设置于地面上,与侧烧炉对流段设置在辐射段顶部相比,对流段的安装和检修都较为方便,汽包安装高度亦大大降低。

(8)由于顶烧炉火嘴较少、便于采用空气预热器。

空气经对流段低温热预热后进入火嘴助燃,可节省燃料消耗。

(9)顶烧炉因火嘴集中、能量大、数量少,更适合于燃烧低热值的PSA脱附气。

2、转化炉管的选择

转化炉管是在高温高压下工作的,所以对材料要求比较苛刻。

四川化机厂于1985年2月从美国阿贝克斯公司(国内引进的Kellogg型的转化炉管均用该公司技术生产)引进了制造离心浇涛管的设备和技术。

目前,国内已有四川化机厂、兰州炼油厂机械厂、烟台玛努尔合金炉管厂等厂家能生产HP、HK系列的离心浇涛管,产品质量已达到国外同类产品指标,并已投入批量生产。

国内几家化肥厂先后采用国产炉管在转化炉内试验,使用效果较好。

在相同条件下,HP系列炉管和HK系列炉管相比,具有使用温度高,许用应力大的特点,因此,本设计推荐采用国产的HP系列炉管。

3、转化炉管的支撑

转化炉管的支撑一般采用三种方式:

上部吊挂;

下部支撑;

下部支撑与上部吊挂同时采用。

1)上部吊挂

炉管单独吊挂其受热膨胀的位移量全部由下尾管吸收,因此所需下尾管较长。

而下尾管是处在820℃以上的高温条件下,对材质要求苛刻,要使用高合金材料。

下尾管长度较长,不仅浪费高合金材料,而且会经常出现断裂现象,所以炉管上部吊挂,向下膨胀近年来已逐步被淘汰。

2)下部支撑

炉管单独下部支撑,则炉管受热膨胀后全部由上尾管吸收其位移量,因此所需上尾管较长。

但由于上尾管仅处在500℃左右条件下,可以使用18-8材质。

因此。

可节约高合金材料,减少上尾管断裂现象发生,延长使用寿命。

但是,由于炉管较长,其挠度较大、加上炉管受热有些不均,因此在使用过程中会出现炉管弯曲直至报废。

因此炉管仅采用下部支撑方式是不完善。

3)下部支撑与上部吊挂同时使用

这种炉管支撑方式同时具有了上述两各支撑方式的优点:

a、以上尾管吸收热胀量降低了设备造价。

b、上部吊挂改善了炉管受力状况,减轻了炉管受热不均而产的弯曲,提高了操作可靠性。

根据上述情况,本报告设计中选用下部支撑与上部吊挂同时使用的支撑方式。

目前由我公司设计的南京,镇海,兰州,辽河,辽化,吉化,茂名等制氢装置均采用上述支撑方式。

4、下集合管

由于该制氢装置规模较小,转化炉下集合管的直径较小,采用热壁管(材质为Cr2ONi32)较为经济合理。

5、采用新型顶烧燃烧器,它具有以下优点:

1)燃料适用性强,可单烧高压瓦斯,也可单烧低压瓦斯,还可同时烧两种瓦斯。

2)空气与燃料正交碰撞混和,混和均匀,从而使燃料充分燃烧。

3)不易回火和堵塞。

4)焰形稳定,火焰刚直有力。

(二)反应器

制氢反应器全部采用热壁结构,筒体采用低铬钼钢材质。

加氢反应器,为热壁板焊结构。

主体材质选用SA387Gr22CL.2,内壁堆焊TP.309L+TP.347,堆焊层厚度为6.5mm,内件0Cr18Ni10Ti,反应器设二个床层。

反应器按国内制造考虑,其主体材料按进口考虑。

(三)冷换设备

转化气蒸汽发生器采用卧式烟道式结构,有利于降低设备造价,便于安装与检修。

管程中心管出口处设调节机构,用以调节转化气出口温度、管程入口处采用冷壁结构,内衬耐高温衬里。

由于操作条件较苛刻,并考虑酸性水对设备的腐蚀,非定型换热器壳体采用碳钢,换热管采用不锈钢管。

本装置有六台高压换热器。

两台反应流出物低分油换热器为高低压型,管子0Cr18Ni10Ti,管程材质为15CrMoR+0Cr18Ni10Ti,壳程材质为20R。

一台反应流出物热进料换热器为高压型,管程材质为SA387Gr22CL.2+0Cr18Ni10Ti。

换热管子材质为0Cr18Ni10Ti。

壳程材质为15CrMoR+0Cr18Ni10Ti。

两台反应流出物冷进料换热器为高高压型,管程材质为15CrMoR+0Cr18Ni10Ti。

壳程材质为16MnR。

(四)压缩机

1、原料气压缩机为两台,一开一备。

兼开工压缩机。

2、新氢压缩机(共2台,一开一备)

根据工艺操作要求及流量变化范围,该机采用对称平衡型往复活塞式压缩机,二级压缩,二列布置。

电机采用增安型无刷励磁异步电机驱动。

机组安装在两层布置的厂房内。

机组由压缩机、电动机、润滑油系统、强制夹套冷却系统、检测控制系统、辅助设备、盘车机构等组成。

压缩机与电动机之间采用刚性联轴节直联。

压缩机按照API618设计制造。

每级气缸进、排气口均按上进、下出布置。

气缸及气缸盖夹套用强制夹套冷却系统冷却。

采用双室隔距件。

气缸设卸荷器和余隙腔用作气量调节。

气缸、活塞环、活塞杆、填料函按无油润滑选材及设计。

机组内的所有电气设备均应符合防爆要求。

主电机的防爆等级不低于eIIT3,其它用电设备不低于dIICT4。

3、循环氢压缩机(共2台,一开一备)

根据工艺操作要求及流量变化范围,可采用对称平衡型往复式压缩机,单级压缩,二列布置,电机采用增安异步低速电机驱动。

机组的配置及要求同新氢压缩机组。

(五)吸附塔

设计,所有设备设计寿命15年。

本装置的吸附塔直径较大,而大型吸附塔设计的关键是如何在实现良好的气体分布的同时尽量减少吸附塔死空间。

我公司为此开发了新型锥型下分布器结构可大大减小床层死空间,充分利用所有吸附剂,有利于减少产品氢气的损失,达到了世界先进水平。

二、主要设备规格表

1、加氢精制单元主要工艺设备表(见表4-6-1)

2、制氢单元主要工艺设备表(见表4-6-2)

加氢精制单元主要设备表表4-6-1

设备名称

规格

介质名称

操作条件

mm

MPa(G)

反应器类

加氢精制反应器

φ2400×

20000(T.L)

原料油、氢气

415

8.6

12Cr2MoR堆焊TP.309L+TP.347,

~56t

塔类

循环氢脱硫塔

φ1600×

17400(TL)

循环氢,H2S,MDEA,H2O

59

7.4

17层浮阀塔盘

分馏塔

φ2200×

28500(TL)

柴油、汽油、油气、H2S

316

0.32

34层浮阀塔盘

稳定塔

φ80012001600×

21800(TL)

汽油、油气、H2S

205

0.82

20层浮阀塔盘

加热炉类

反应进料加热炉

热负荷4150KW

柴油.氢气

340

重沸炉

热负荷5350KW

330

原料油过滤器

原料油

50

0.7

自动反冲洗,20R,~1.8t

加氢精制单元主要设备表续表4-6-1

冷换类

反应流出物混合进

φ1100×

6000,U型管双壳程

管程

反应流出物

405

7.9

12Cr2Mo1+0Cr18Ni10Ti

15CrMoR+0Cr18Ni10Ti,~11t

料换热器

A=230m2φ19管子

壳程

混合进料

304

9.1

反应流出物反应流出

6000,U型管,双壳程

279

7.8

15CrMoR+0Cr18Ni10Ti

16MnR,~21t

物冷反应进料换热器

A=355m2φ19管子

223

9.2

反应流出物分馏塔进

BIU900×

6000A=300m2

300

7.85

B=150φ19管子

分馏塔进料

248

0.5

精制柴油低分油

柴油

291

0.75

15CrMoR

16MnR,~20t

换热器

B=200

低分油

184

1.0

粗汽油稳定汽油

稳定汽油

0.83

16MnR

粗汽油,H2S

172

6

除盐水分馏塔顶气

除盐水

95

0.40

B=900

分馏塔顶气,H2S

188

0.30

7

分馏塔顶后冷器

循环水

40

B=300

0.27

8

稳定塔顶水冷器

BIU400-4.02.5-55-619-2I

0.4

20R

B=150

稳定塔顶气,H2S

111

0.80

9

稳定塔重沸器

BJS600-2.5-90-625-2I

315

0.9

B=450

稳定塔底油

0.85

10

稳定汽油水冷器

BES600-2.5-90-625-2I

0.65

11

贫胺液加热器

BIU500-2.5-25-325-2I

0.3

贫胺液

51

0.40

轴功率

KW

电机功率

空冷器类

反应流出物空冷器

150max

8.0max

14×

22×

20R,20#,~30t

分馏塔顶空冷器

油气,H2S

147

0.28

23×

30×

20R,20#,~24t

精制柴油空冷器

80

10×

15×

20R,20#,~20t

稳定汽油空冷器

77

11×

20R,20#,~15t

规格(T.L)

Mm

容器类

原料油缓

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2