自己动手做胆机.docx

上传人:b****3 文档编号:3760262 上传时间:2023-05-06 格式:DOCX 页数:20 大小:38.17KB
下载 相关 举报
自己动手做胆机.docx_第1页
第1页 / 共20页
自己动手做胆机.docx_第2页
第2页 / 共20页
自己动手做胆机.docx_第3页
第3页 / 共20页
自己动手做胆机.docx_第4页
第4页 / 共20页
自己动手做胆机.docx_第5页
第5页 / 共20页
自己动手做胆机.docx_第6页
第6页 / 共20页
自己动手做胆机.docx_第7页
第7页 / 共20页
自己动手做胆机.docx_第8页
第8页 / 共20页
自己动手做胆机.docx_第9页
第9页 / 共20页
自己动手做胆机.docx_第10页
第10页 / 共20页
自己动手做胆机.docx_第11页
第11页 / 共20页
自己动手做胆机.docx_第12页
第12页 / 共20页
自己动手做胆机.docx_第13页
第13页 / 共20页
自己动手做胆机.docx_第14页
第14页 / 共20页
自己动手做胆机.docx_第15页
第15页 / 共20页
自己动手做胆机.docx_第16页
第16页 / 共20页
自己动手做胆机.docx_第17页
第17页 / 共20页
自己动手做胆机.docx_第18页
第18页 / 共20页
自己动手做胆机.docx_第19页
第19页 / 共20页
自己动手做胆机.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

自己动手做胆机.docx

《自己动手做胆机.docx》由会员分享,可在线阅读,更多相关《自己动手做胆机.docx(20页珍藏版)》请在冰点文库上搜索。

自己动手做胆机.docx

自己动手做胆机

自己动手做胆机

  现在喜爱听音乐的朋友是越来越多了,为了听到更好的声音,很多朋友都购买了品质比较高的音源,比如高档声卡或HiFi入门级的CD台机,但却还是无法得到心目中的高品质声音表现。

问题到底出在哪里?

  在音响店里聆听高档音响,留下了难以磨灭的印象,想来不少朋友都有过这样的经历吧。

虽说一分钱一分货,但自己能否构建与之表现稍相近的系统呢?

  HiFi耳机的优异表现相信给过很多朋友以惊喜,但在很多地方都会留下一些底气不足的遗憾,这个问题应该怎么解决?

  关注HiFi音响的朋友们如果见识过名厂或高手制作的胆机,观摩过那如镜光滑的机箱和灵性四溢的胆管,再聆听过柔美醇和的声音,可能都会不禁揣测一下内部的结构。

如果打开外壳,见到内部并没有预想中的电路板,而是几根粗铜线纵横交错地搭成一个网状框架,各个元件都整齐地焊接在这个框架上,之间再用各色导线连接,不免会惊叹连连。

高手会说,这样的手法叫做搭棚焊接,简称搭焊,既是最传统的,也是最好声和最艺术的手法。

也许朋友们会想:

我能不能拥有这样的一个艺术品呢?

  希望在大家看完本文后,这些疑问能够得到有价值的回答。

音响本是学无止境,笔者言语中若有不周或谬误,希望能与大家展开商榷和得到斧正。

  下文的很多内容都涉及到DIY,如果要进行操作,请大家特别注意安全,在有经验的朋友的指导下进行。

由于实际电路中变数甚多,所以只有严格仔细地跟随必要步骤并加以耐心细致的调整,才会得到尽量好的声音品质。

由于具体情况有别且无法完全考虑到,所以请大家具体问题具体分析,笔者只尽量保证陈述的真实和贴切,而不对效仿操作的后果负责。

寻求解决

  众所周知,自从真正被运用到计算机上以来,音频技术的发展不断为我们创造着惊喜,从8bit到44.1KHz/16bit再到96KHz/24bit、从单声道到立体声再到多声道、从MIDI到MP3再到APE和FLAC,无一不在刺激着我们对听觉享受的渴望和对声音品质的追求。

应该说随着“发烧级”声卡创新AWE64GOLD和帝盟MX200先后的横空出世,一群狂热的电脑音频发烧友开始形成,电脑也成了很多朋友的音乐欣赏中心。

  对很多狂热地喜爱音乐的朋友来说,音频技术给他们带来实实在在的最大快乐是在APE格式被广泛使用之时——来自中规中矩的44.1KHz、16bit、立体声和无损压缩(96KHz、24bit和多声道这样高指标虽然更加能吸引人们的眼光,但是我们能欣赏的音乐只能来自唱片公司,而SACD和DVD-Audio高高在上的价格是我们无法轻松负担的;实际上高手们也说,当CD的声音在得到较好回放的时候也能给我们非常美妙的享受)。

从这个时候开始,我们才能在电脑上欣赏到CD的原本声音,以前不得不忍受的MP3和CD随身听“电子防震”压缩终于可以被抛到九霄云外。

  随着硬盘容量的换代升级,我们能存放下大量的高品质音乐文件以供随时聆听。

在随之而来的需求刺激下,各大声卡和音箱厂商开始掀起了为高品质音频回放开发产品的高潮,连一些在以前只流连于传统HiFi领域的厂商也投身进来。

一时间飞利浦70x、黑金Ⅱ、黑金Cannon、Envy24系列、DMXFire1024、RME9624和漫步者R1900Ⅱ、惠威M200、世代V500、朝露、发友E星/黑钻等等让人挑花了眼,同时连原本不属于电脑音频领域的HiFi耳机也逐渐成为了越来越多朋友们的新宠。

一时间,电脑音频形势似乎一片大好。

  但是、但是,我们在自己精心搭配出的电脑音频系统上仔细聆听音乐的时候,却发现声音多多少少有些问题:

高频不那么柔顺细腻,而有些生硬干涩;中频不那么透明柔顺,而有些染色闷声;低频不那么紧凑结实,而有些松散混浊。

做个实验,试听一下DianaKrall演绎的《Temptation》、KariBremnes的《AloverinBerlin》或者AmandaMcBroom的《Makemeakite》,也许你就会发现问题还不止前面提到的这些,毕竟这些演绎和录音是几乎无可挑剔的。

  问题到底出在哪里?

也许朋友们已经发现了,很多时候同样价位下,耳机的声音表现要比多媒体音箱的好。

之所以出现这样的情况,一方面是因为同样成本的耳机单元能比音箱单元做得更好;另一方面则是出于放大器的原因,因为音箱需要的功率通常要比耳机大得多,在成本和体积(需要放入音箱箱体之中)双重限制之下很难做出让人满意的放大器。

所以很多朋友也将耳机作为了一个选择。

但是购买了比较高档的耳机来搭配好的声卡之后,很多朋友也发现问题并没有得到完全的解决,这在很大程度上同样也是因为声卡上放大电路的不足:

绝大多数声卡上的放大电路只是一片集成运算放大器。

单从指标上来看,很多集成运算放大器的静态电流不到10mA,这样一来,直接推动耳机时很多声卡上的集成运算放大器都处于低压和甲乙类的工作状态,这是在电脑音频系统中对声音品质诸多不利因素里面是影响相当大的一个问题。

  既然找到了一个大问题所在,我们就应该对症下药了。

在网上搜一搜,耳机放大器的成品、方案和电路都很多,朋友们可以考虑跟着笔者DIY一台,感受一下个中滋味;即便是不打算自己动手,参考一下相信也会开卷有益的。

  也许面对这样浩大的一个DIY工程,朋友们不由得有点发怵。

不过别担心,下面我们就以一个具体的例子开始一步步地介绍怎样从零开始DIY一台耳机放大器,从技术基础到购买元件再到组装方法都会涉及,如果跟着这些必要的步骤走下去,相信胜利就会在眼前了。

 

初试方案

  在笔者曾经的蹭听经历之中,一次天龙高级CD机接麦景图胆机推B&WN801音箱播放爵士乐的“此曲只应天上有”的曼妙表现令人魂牵梦萦辗转反侧三月不知肉味,也在笔者心中深深烙下了变压器输出胆机的印记,所以笔者这次也选择了电子管的方案。

  其实对于电子管,我们并不十分陌生。

各位朋友应该还记得以前曾名噪一时的在模拟音频放大部分采用电子管的几款Aopen主板,所用的电子管是Sovtec的6922,这是一种常用于低噪声高频电压放大场合的双三极管;而前段时间电子科技大学高人推出的USB电子管声卡采用的是北京厂的军用级6N11,这其实跟前面的E88CC是互为代换型号的关系;还有大极典的几款多媒体音箱。

更多具体的例子就不再列举了,总之大家能消除一些陌生感就行了。

 

  考虑到很多朋友对电子管和模拟电路并没有足够的了解,为了能正确地处理实际问题,请关注下面这些绝对必要的基础知识,或者也可以先从下一节开始阅读,需要了解基础知识再回头看看。

如果有朋友对技术细节感兴趣的话,请查阅相关资料。

倘若对此已经成竹在胸,则可以直接跳到下一节。

  先介绍一下电子管的基本知识。

  电子管又叫真空管,美国人称为Tube,英国人称为Valve。

J.A.Fleming于1904年制造出第一只二极管Diode,使整流直流电源的使用成为现实;DeForestLee于1907年在二极管的基础上研制出三极管Triode,使放大器从此登上了历史舞台;之后衍生出的五级管Pentode和束射四极管BeamTetrode,使电子管可以工作于更高的频率和输出更大的功率。

实际上还有其他类型的电子管,由于跟本文关系不太紧密,所以略过不提。

  相对于晶体管放大器,电子管放大器体积大、重量重、效率低,而且从指标上来讲失真大,所以当上世纪60年代晶体管放大器面世时电子管遭受了人们的冷遇。

直到1970年情况才有了改观,美国AudioResearch公司的WilliamZaneJohnson先生在美国HiFi大展上展出了他研制的电子管放大器,引领了电子管放大器的伟大复兴。

历史的必然在于电子管放大器虽然有自身固有的缺点,但是也有难以替代的优势。

电子管的非线性失真指标虽然高,但大多发生在低次谐波上,实际上对听感的恶化不大,反而往往更加好听;晶体管的非线性失真则有发生在高次谐波上,对听感的恶化较大。

电子管有助于声音的人性化,甜美自然的声音听来更加让人愉悦放松,同时电子管的失真特性也有利于掩盖音源的不足;而电子管的不足在于低频控制能力稍欠和大电流输出能力不足,不过在推动耳机时的表现不会让人无法接受。

电子管电路的特点则是构架简洁,用管数量和放大级数都少,很有些Simpleisthebest的味道,也可以让我们集中财力拿下尽量好的管子。

  下面尽量简单地说一下电子管工作原理,了解这些原理将直接有助于处理实际电路问题。

电子管由外部的玻璃壳体、内部的几个电极和连接电极的管脚组成。

二极管是最简单的电子管,里面有灯丝Filament(跟白炽灯的灯丝看起来差不多,通常用f表示)、阴极Cathode(紧靠灯丝的一块金属板或者灯丝本身,通常用K表示,直接使用灯丝作阴极的电子管叫直热式,有独立阴极的则叫旁热式)和屏极Plate(位于最外面的一块金属板,通常用P表示)。

电子管实际电路工作时,灯丝上有电流通过就会发热,当自身或加热阴极到达一定温度之后,会有电子获得足够的能量而从上面发射出来,这些电子将被屏极吸收,但由于灯丝或者阴极不能吸收电子,所以这个方向不能反过来,这个单向导电特性是电子管的工作基础。

三极管是在二极管的阴极和屏极之间增加了一个栅极Grid(一片比较致密的金属网格,通常用G表示)以控制电子的运动,而正是栅极的控制作用使得电子管拥有了放大电压信号的能力。

五级管则是在三极管的第一栅极G1和屏极之间依次增加了第二栅极G2(称为帘栅极)和第三栅极G3(称为抑止栅极),目的主要在于减小各极间电容和抑止二次电子发射。

电子管各极在电路中的连接方式请参考本文后面章节中的电路部分。

 

(五级管从上到下:

P、G3、G2、G1、K和f)

  由于电子管玻璃壳体内部存在空间电子流和灯丝,电子管内部需要抽成真空(实际上也有少部分型号的电子管出于特殊需要而在内部充以低压气体),这就是电子管又叫作真空管的原因。

从实际生产工艺来讲,电子管连接外部电路的管脚和玻璃壳体之间是无法保持理想密封而不让空气通过的,所以在电子管的内侧顶部会蒸镀上一些用于吸收气体的消气剂,用以与进入壳体内部的空气发生作用,从而保持内部的真空程度。

看起来这些消气剂就像是一层附着在玻璃壳体顶部内侧的银镜。

  在实际的电子管电路中间,由于电子管和变压器都会发出很多的热量,这也会影响到元件的状态,所以电子管设备往往在开机一段时间之后才会进入完全稳定的状态——就放大器而言就是稳定后声音才会最好。

  简单说了说原理以后,我们就开始考虑具体的电路。

  电源方面决定采用传统的电子管全波整流加CLC滤波的方式。

电子管全波整流是指用一支双二极管来把两个极性相反的正弦交流电压变成直流电;而后面的CLC滤波是指使用并联的电容和串连的铁芯电感(即扼流圈)来将直流电压的纹波尽量抹平。

  由于用于推动耳机的电子管放大器不需要太大的输出功率,所以电路里使用两级放大就足够了,也就是前级电压放大和后级功率放大,而无需像大功率放大器一样需要在电压放大级和功率输出级之间设置一个推动级。

考虑到实用价值,前级电压放大电路通常有单端Single-End和SRPP(ShuntRegulatorPull-Push并联调整推挽)两种形式,单端放大只使用一个三极管,结构简单,音色也最纯真,中频尤其优美;SRPP形式的高频细致,但低频量感稍欠,且工作时会产生频率非常低的纹波,不用直流伺服电路加以控制的话不适于通过直接耦合输出给后级,考虑到具体情况,所以我们采用了单端形式。

后级功率放大电路简单来说可以分为单端和推挽,由于不需要输出太大功率,我们也采用了单端形式。

  电子管的灯丝供电可以采用交流和直流两种方式。

交流供电的好处是声音动态表现好、对电子管寿命影响较小,缺点是噪音相对较大;直流供电的特点则几乎正好与交流供电相反。

考虑到耳机放大器的电压放大倍数不大,噪音问题也不会太大,我们决定采用交流灯丝供电。

  两级放大电路之间的信号耦合方式通常有直接耦合、电容耦合和变压器耦合三种。

直接耦合就是用导线直接连通前后两级,信号可以直接通过而没有损耗,但由于导线两端没有电位差,所以必须把前后两级电子管的各极直流电位都提高,以使前面电子管的屏极和后面电子管的栅极直流电位相等,考虑到电源成本和安全因素,这次最终没有采用直接耦合。

电容耦合可以用电容来隔离直流,使各级的工作点(电子管各极之间的直流电位差)得以保持互相独立,但电容会影响到细节和低频的表现,综合考虑后这次采用了电容耦合。

变压器耦合的原理与电容耦合类似,虽然变压器耦合的效果可以非常好,但是传输变压器比较难以买到而且价格昂贵,也只好放弃了。

  单端功率输出级的输出方式可以分为阴极输出和变压器输出两种方案。

阴极输出方案由于不带输出变压器,所以也称为OTL,阴极输出的声音更加透明,声场更好,而且成本可以做得较低;但由于电子管输出阻抗高、工作电流有限,所以单个电子管阴极的输出推动低阻抗负载的能力有限,虽然通过多管并联可以改善推动能力,但是并联输出需要尽量精确的配对,这是我们的财力和条件都难以企及的。

反观变压器输出方案,由于输出变压器的阻抗匹配作用,输出级电路所“看到”的是变压器初级的高输入阻抗而不是负载的低输入阻抗,所以推动低阻抗负载的表现较好。

同时变压器由于线圈的电感、磁体的磁滞和铁芯钢片的磁传递等作用而具有非常特别的自身音色。

变压器输出方式是不能空载工作的,也就是一定要先接上负载再开机。

高品质输出变压器的材料和工艺使得其造价也比较高。

由于这次是为高档的低阻抗耳机而设计,再回想起麦景图的优美表现,为了打上这个牙祭,笔者也狠狠心选择了输出变压器。

  还有就是负反馈。

所谓负反馈就是将放大器输出的信号经过反相后送回放大器的输入端。

对于是否采用负反馈众说纷纭意见不一,但是负反馈的优点和缺点是有共识的:

负反馈能对放大器提高稳定性、降低非线性失真、扩展通频带、提高输入阻抗和降低输出阻抗;但也会造成瞬态互调失真和留下自激的可能。

考虑到放大电路只有两级,信号延迟不大,瞬态互调失真也不会严重,同时考虑到稳定性和输出阻抗,所以这里采用了少量的负反馈。

  由于其他元件参数需要先确定电子管和输出变压器,所以我们把整个电路的具体参数放到选定器件之后。

选定器件

  小结一下上一节的思路:

电源是胆整流加CLC滤波,放大电路是全单端电容耦合加变压器输出,辅以少量负反馈。

大致方案敲定了之后,我们再来选择具体的器件。

需要我们特别来选择的器件有电子管、耦合电容和输出变压器,其他的如电源变压器、扼流圈、旁路电容和电阻等对声音的影响则不是决定性的。

  首先来敲定电子管。

  前级电压放大方面,我们应该当然选用三极管,因为三极管失真较低,而且放大能力也足够用了。

事实上我们能比较容易买到的三极管都是双三极管,也就是一个玻璃壳体里面装了两支三极管。

在音频电压放大领域最常用到的双三极管家族大致有这么几种:

CCA/E188CC/E88CC/ECC88/6DJ8/6922/6N11、ECC83/E83CC/12AX7/6Н2П/6N2和2C51/5670/6Н3П/6N3。

之所以用这样的形式来写,是因为电子管的很多不同型号其实参数相同或者相近,而管脚意义或产地可能不同,可以代换使用,只是要注意顾及到不同型号之间的差异。

以前面列举的第二种为例,ECC83/E83CC/12AX7都是欧美型号,6Н2П是前苏联型号,6N2是国产型号。

E88CC家族设计用于低噪声高频电压放大,声音大致走向是高解析力与平和音色;ECC81、ECC82和ECC83家族设计用于低频电压放大,声音大致走向则都偏向柔美音色;2C51家族设计用于高频电压放大,声音大致走向可以说差不多在前面两者之间。

当然出于不同取向,各位朋友可以有不同的选择,只是那样的话必须要根据具体的管子参数来调整电路。

同样也是因为有些管子之间可以互换,我们才可以比较方便地品味不同管子之间的不同风格。

考虑到个人听音偏好,笔者最终选择了2C51/5670/6Н3П/6N3家族,它们的管脚顺序定义完全相同。

  然后是功率放大管的选择。

因为我们希望放大器能轻松地持续输出1W以上的功率,而且并不打算在输出级采用多管并联,所以这里只能选择五级管或者输出功率较大的三极管。

但是因为能输出大功率的三极管比较贵,所以我们选择了五级管,虽然失真比三极管要大,但是也完全可以接受。

符合我们要求的五级管在市场上最容易买到的应该就是EL84/6BQ5/6П14П/6P14,同样地,EL84/6BQ5是欧美型号,6П14П是前苏联型号,6P14是国产型号,它们的管脚顺序定义也完全相同。

  最后是整流电子管的选择。

市场上有售的很多双二极管都符合我们的要求,比如5U4/5U4G/5Z3/5Z3P、5Z4/5Z4G/5Z4GT/5Z4P、5AR4和5R4等等都可以。

对同样的交流电压,5Z3和5R4等直热式整流管的整流电压会低一些,而5Z4和5AR4等旁热式整流管的整流电压则会高一些,不过差别不是太大。

上面所述的各双二极管的管脚顺序定义完全相同。

  各电子管的国产型号结构示意图请见后文“实践准备”一节。

  除了型号,品牌也是选择电子管的重要因素,借用高手的话:

“英国胆(就是英国声),好似一杯香浓的咖啡,浓郁细腻,具有超强感染力,令人着迷;荷兰胆,声音顺滑流畅,充满活力而又不失韵味,是一种轻松自然的享受;德国胆,声音干净,直率,分析力高,就像是得意志民族的稳重,严谨,理性的作风;俄国胆,刚猛有力,明快细腻,火气大,很有俄罗斯民族的阳刚之气;美国胆,动态凌厉,节奏明快,刚韧并举,处处可以感受到美利坚的气息”。

举例来说,英国品牌有Mullard和Brimar等,荷兰品牌有Amperex和Philips等,德国品牌有Telefunken、Siemens和RFT等,俄罗斯品牌有Sovtec和OTK等,美国品牌有WE、RCA和Tunsol等,东欧品牌有JJ和Tesla等,国产品牌有北京、曙光和桂光等。

我国的电子管技术是解放后向前苏联学习的,所以国产胆也会有些苏联胆的风格,当然在经历较长时间的发展之后,国产胆也有了自己的特点,也有一些功率输出管可以和外国名管媲美,不过在电压放大管方面还有比较大的不足,最明显的是声音有些朦胧,另外高低频的延伸稍差。

  接下来是耦合电容的选择。

对耦合电容稍有了解的朋友都知道,这里面有非常大的学问,要散开来讲就收不住了,所以在这里笔者只打算略提一点。

在信号耦合通路上使用的电容大多是无极性薄膜电容,也就是无所谓正负极,可以承受两个方向上的直流电位差。

耦合电容种赫赫有名的品牌有很多,主要有Jensen、MIT、Rel-Cap、AudioCap、MultiCap、Hi-Rel、Wonder、KimberKap、Solen和WIMA等等。

Jensen的油浸电容是其拿手好戏之一,从材质上分为银膜、铜膜和铝膜三种,档次也是顺次从高到低,Jensen油浸电容的特点在于音乐感强、非常耐听,堪称仙乐飘飘,声音密度高,声场、动态、解析力和全频带表现都非常好。

MIT声场宽大,中频丰厚,低频弹性好,声音致密凝聚,音色高贵华丽。

Rel-Cap是美国的一家大型音响电容制造厂,以OEM的方式向AudioCap、MultiCap和Hi-Rel提供产品,其产品多表现为音色柔美、中低频丰满、堂音丰富、能量感强。

Wonder的风格是瞬态迅速,中频致密、高频柔美、低频结实,音色清丽,声场、解析力和透明度的表现也相当好。

Kimber中频甜美丰润,细腻程度和结像能力非常好,只是高低频两端延伸比MIT等电容稍差。

Solen的特点是声音柔美、稍显朦胧,但其全黑新品锡膜SCR修正了先前的灰色S和红色SCR的缺陷,声音透明度和动态都很不错,只是解析力和声音质感稍逊于其他高档电容。

WIMA跟Solen的风格迥异,旧款WIMA都是红色外观,高频华丽多姿,中频实体感好,但不够细腻,新款黑WIMA称为BlackBox,声音甜美流畅,音色鲜活华丽,声音密度和高频延伸几乎能跟MIT像媲美,只是低频下潜和解析力稍逊。

我们平常使用的是Solen和WIMA。

  输出变压器方面,我们此时需要敲定的参数是初级阻抗4K到5K。

其他参数方面,我们与其他器件一起放到下一节来讲。

  至此,我们已经可以确定具体的电路原理图(图中未明确标注功率的电阻均可取1/2W,未明确标注耐压值的电容均取400V)。

由于参数推算过程会涉及到太多的技术细节,笔者不再一一陈述,而只在最后的调试步骤中提及一点。

 

逛逛市场

  方案和器件都基本定下了,接下来就该去电子元件市场采购所需器件。

  当然,我们要DIY胆机的话,需要这么一些基本工具:

50W功率左右的电烙铁、万用表、尖嘴钳、斜口钳或者钢丝钳(老虎钳)、螺丝刀、美工刀、直尺、电钻(可能需要)、足够的焊锡丝、热熔胶条和热熔胶枪。

或买或蹭,反正总得有得用才行。

  先去电子管商店看看,一般来说这些商店很可能会同时有全新和二手的管子出售。

按照既定计划,我们将总共需要采购一支双二极管作整流、一支双三极管作电压放大和一对五级管作功率放大。

至于购买国产管还是进口管、全新管还是二手管,就丰俭由人了,当然也可以先买差一点的以后再升级好的代换型号。

一般地,整流管选用国产5Z3P、5Z4P或5AR4都不错了,也可以选用进口的5R4或5U4等。

电压放大管方面,全新的国产6N3是相当好买的,全新的进口2C51、5670、6Н3П则不是太好买,也可以考虑二手的。

功率放大管方面,全新国产6P14相当好买,进口的EL84、6BQ5和6П14П也还算比较好买,遇到好的二手也可以考虑。

进口管如果管脚镀金的话,表示品质比普通的要好,不过价格也要高;国产管分为四个等级,M民用级、J军用级、T特级、Q电桥级,一般买J级的即可,T级的更好,但没必要去刻意寻找Q级的。

如果要购买二手电子管的话,需要特别注意电子管的消气剂,也就是前面提到的那一层附着在玻璃壳体顶部内侧的银镜,如果具有水银般光泽的话表示电子管还有很长的寿命,如果光泽已经黯淡或者消气剂边缘变得灰蒙蒙的话就表示电子管的已经使用了比较长的时间,如果消气剂已经苍白脱落则表示电子管内部的真空程度已经不佳。

顺便说一句,同一型号不同厂牌的电子管声音不同,而且即便是同一型号同一品牌,生产年代不同的话声音也很可能不同,如果要具体说来的话也是大有文章,限于篇幅不再详述。

  接下来是耦合电容。

在笔者在上一节所列举的品牌里面,Solen和WIMA价格比较平易,也容易买到,而前面几种都是价格高昂而且难觅芳踪。

同时,好的全新耦合电容并不容易买到,价格也相当贵,比较可行的办法是买二手电容,因为薄膜电容的寿命非常长,只要外观没有严重损坏就几乎不用担心报废,当然如果买油浸电容的话要注意外壳密封完好。

所以我们要去的应该是有销售二手电容的商店或者旧货小摊聚集区。

一般状况下,我们都能不太困难地找到Solen的S、新旧款的SCR和WIMA的红MKP/MKS、黑BlackBox,具体的选择看个人口味,根据电路,我们选用一对同型号的容量为0.22uF或0.47uF、耐压值为250V(更高也可,但价格较高)的即可。

  音量电位器方面,我们一般选择一只50K或者100K的双联电位器。

由于电位器总管电压信号分配,而且使用中调节频率也相当地高,所以应该买品质尽量好的。

品牌方面一般选择Noble或者Alps的。

在一百多元的价位上,碳膜电位器(连续调节)比步进电位器(分档调节)的品质要好一些,建议选用。

如果买更高档的,可以考虑级进电位器。

当然如果只能买便宜的电位器也可以用,只是在使用一段时间后可能会出现噪音或者左右音量不平衡。

  电阻方面,如果资金投入比较多的话可以买Dale或Holco等名牌,不过一般选用国产的普通金属膜电阻即可。

阻值和功率参照前面的电路图,图中没有明确标识功率的则为了方便可以全部选用1/2W的;阻值标识为范围的则可以考虑购买几个覆盖此范围的不同阻值的,或者用串并联来实现。

电阻的阻值一般有1-5%的误差,由于电阻的价格便宜,可以考虑多买一些阻值和功率相同的,以便制作时挑选出参数尽量接近所需数值的或便于作出微调。

需要注意的是,前面列出的电路原理图里的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2