对动态优化设计的认识及其应用.docx

上传人:b****4 文档编号:3885674 上传时间:2023-05-06 格式:DOCX 页数:15 大小:260.75KB
下载 相关 举报
对动态优化设计的认识及其应用.docx_第1页
第1页 / 共15页
对动态优化设计的认识及其应用.docx_第2页
第2页 / 共15页
对动态优化设计的认识及其应用.docx_第3页
第3页 / 共15页
对动态优化设计的认识及其应用.docx_第4页
第4页 / 共15页
对动态优化设计的认识及其应用.docx_第5页
第5页 / 共15页
对动态优化设计的认识及其应用.docx_第6页
第6页 / 共15页
对动态优化设计的认识及其应用.docx_第7页
第7页 / 共15页
对动态优化设计的认识及其应用.docx_第8页
第8页 / 共15页
对动态优化设计的认识及其应用.docx_第9页
第9页 / 共15页
对动态优化设计的认识及其应用.docx_第10页
第10页 / 共15页
对动态优化设计的认识及其应用.docx_第11页
第11页 / 共15页
对动态优化设计的认识及其应用.docx_第12页
第12页 / 共15页
对动态优化设计的认识及其应用.docx_第13页
第13页 / 共15页
对动态优化设计的认识及其应用.docx_第14页
第14页 / 共15页
对动态优化设计的认识及其应用.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

对动态优化设计的认识及其应用.docx

《对动态优化设计的认识及其应用.docx》由会员分享,可在线阅读,更多相关《对动态优化设计的认识及其应用.docx(15页珍藏版)》请在冰点文库上搜索。

对动态优化设计的认识及其应用.docx

对动态优化设计的认识及其应用

对动态优化设计的认识及其应用

对动态优化设计的认识及其应用

摘要:

在学习了动态优化设计理论后,查阅了相关资料,了解了动态优化设计理论在机械工程中的应用。

本文以前人的几个比较有代表性研究成果来说明动态优化设计在机械工程中的应用。

关键字:

动态优化设计,摆动活齿传动机构,振动筛,高速凸轮机构

1.引言

现代机械动态优化设计是在产品的研究和开发过程中,对机械产品的运动学和动力学及与此相关的动态可靠性、安全性、疲劳强度和工作寿命等问题,进行分析和计算,以保证所研究和开发的设备具有优良的结构性能及其他相关性能。

动态优化设计是产品设计的核心内容,它既有广度和深度,而且也有相当大的难度[1]。

随着科学技术的迅速发展,机械动态设计的内容,其广度与深度及所研究的对象正在发生深刻的变化。

总体上可以分为以下三个发展方向:

1)就研究的广度而言,研究内容已由狭义的向广义的方向发展,由此,机械动态设计按其涵盖的内容的广度可分为一下两类:

狭义动态设计和广义动态设计。

狭义的机械动态设计是以机器中的结构型零部件为研究对象,以线性动力有限元为手段,采用理论研究和模型试验相结合的方法,找出产品初步设计中的缺陷和问题,进而对零部件或结构进行动力修改,避免结构在工作发生共振和出现不稳定振动。

广义的动态设计包括机器工作工程中发生的运动学、动力学等与动态特性有关的所有设计内容;2)由传统的动态优化设计向深层次的动态优化设计发展。

传统的动态优化设计法是以提高产品结构性能为主要目标、以线性动力学理论为基础的动态优化设计法。

具体地说,它的主要目的是使机器获得优良的结构性能,其中包括产品的系统可靠性、人机安全性、工作耐久性、结构紧凑性、造型艺术性、无环境污染性和设计经济性,以及其他的性关性能,如功效实用性、运行稳定性、操作宜人性、维修方便性等。

深层次的动态优化设计与传统的动态优化设计的区别是它以非线性动力学理论为基础,即:

以非线性动力学理论为基础的动态设计和已非线性可靠性理论为基础的机器及其零部件可靠性设计;3)从一般机械的动态设计扩展到包括振动机械在内的动态设计[1]。

由于机械结构形式及功能的区别,机械动态设计的内容会有所不同。

机械动态设计的一般过程为[2]:

1)根据设计或实物进行动力学建模;

2)按照所建立的动力学模型计算系统的动态特性并对初步设计进行审核。

机械系统的动态特性通常指该机械系统的固有频率、固有振型及其在激振力作用下的响应;

3)实物或模型试验与实验建模;

4)根据初步计算结果和实验数据,对机械结构进行动力修改。

机械结构动态设计的关键技术有:

结构结合部参数的辨识;系统中阻尼矩阵的确定;模型的修正方法;以设计变量直接作为优化变量,实现结构动力学的求解方法;寻求更快速、更准确的结构动态特性重分析模型与方法[3]。

本文以前人的几个比较有代表性的研究成果:

摆动活齿传动机构[4]、振动筛[5]、高速凸轮机构[6]为例说明动态优化设计理论在工程实际中的应用。

2.基于振动理论的摆动活齿传动机构动态优化设计

摆动活齿传动是一种新型活齿少齿差行星传动,具有传动比范围广、传动效率高、承载能力强和结构紧凑等优点。

近几年,随着科学技术的进步和发展,高速重载和新型机械传动机构的应用越来越广,人们对机械传动的动态性能要求也越来越高,特别是对机械振动和噪声的控制要求更为突出。

2.1摆动活齿传动的结构及传动原理

图la为摆动活齿传动机构的结构简图,偏心激波器1、活齿2、活齿架3、销轴4、中心轮5,其中活齿架3与输出轴固联,活齿2与激波器1和中心轮5分别形成啮合副,活齿架3与活齿2通过销轴4以转动副连接。

机构的结构参数和传动原理如图1b所示,其中a为激波器偏心距,b为激波器与活齿的半径之和,c为活齿偏心距,d为活齿架上铰链分布圆半径,

为摆动活齿传动机构的等效机构——曲柄摇杆机构。

偏心激波器1(输入轴)以

等速转动,推动活齿2运动,在固定中心轮5齿廓约束下,通过销轴4反推活齿架3(输出轴)以

转动,从而实现摆动活齿传动输入轴和输出轴的速度变换。

(a)(b)

图1摆动活齿传动机构的结构和等效机构图

2.2摆动活齿传动扭转振动模型

图2摆动活齿传动扭转振动模型

根据摆动活齿传动的动力学特点,应用等效集中参数的建模方法,建立了摆动活齿传动系统的扭转振动模型,如图2所示。

其中

为激波器的转动惯量,

为活齿架的转动惯量,

为第i个活齿的转动惯量(i=1,2,3,…,n;n为活齿数一半),

分别表示激波器与第i个活齿的啮合刚度和阻尼,

分别表示中心轮与第i个活齿的啮合刚度和阻尼,

分别表示销轴与第i个活齿的啮合刚度和阻尼,

分别为输入转矩和输出转矩。

考虑到活齿的时变啮合刚度和啮合阻尼,建立传动机构的多自由度、变系数、非线性二阶动力学微分方程,其矩阵形式表示为:

(1)

式中:

—分别为扭转振动角加速度、角速度和角位移列向量;

J—转动惯量矩阵;

C—扭转振动阻尼矩阵;

K—扭转振动刚度矩阵;

F(t)—系统外载荷列向量。

2.3摆动活齿传动机构动态优化设计建模

建立的振动方程为二阶非线性振动微分方程,应用Runge—Kutta数值方法求出一个振动周期内的振动角位移

、角速度

和角加速度

的离散值,利用Matlab软件进行动态优化设计,求解摆动活齿传动机构系统的动态响应。

以摆动活齿传动一个运动周期内的活齿振动角加速度的均方根值最小为目标函数f(X),即:

(2)

式中:

N—一个啮合周期内的等分点数;

—活齿任意时刻的角加速度。

根据图1b所示,影响机构动力学性能的独立参数有o,b,c,d和活齿半径

,因此优化设计变量为:

(3)

曲柄存在条件的约束为:

(4)

运动干涉约束:

(5)

式中:

—活齿柱销直径;

—构件间的运动间隙;

—构件间的运动间隙。

连续传动约束

(6)

式中:

z—活齿数

活齿偏心距约束:

(7)

相邻活齿销间距约束:

(8)

强度约束:

(9)

式中:

T—输入力矩;

L—活齿工作长度;

—活齿与激波器啮合副的许用应力;

活齿与中心轮作用力系数的最大值;

—活齿中心轮啮合副的许用接触应力。

设计变量上下界约束:

(n=1,…,5)(10)

式中:

—各设计变量上下界

3.基于动态优化设计方法振动筛设计

为了分析该系统的动态特性,振动筛简化成如图3所示具有3个自由度系统模型。

机体(包括偏心块)的质量和绕质心的转动惯量分别为m和J,基于拉格朗日方程法求解该系统的振动运动微分方程,其具体形式为:

(11)

式中:

M,C,K,Q—分别为质量矩阵,阻尼矩阵,刚度矩阵,干扰力矩阵

图3振动筛系统模型

因为筛体的具体结构比较复杂,所以在动力学分析的数值计算中,直接求质量阵M和刚度阵K就显得比较困难。

这里借助于软件Pro/E和AutoCAD求解,得到质量矩阵M和刚度矩阵K。

基于振动筛的动态特性理论和利用Matlab软件编程进行数值求解。

根据以上计算结果,求得系统的固有频率及振型向量和系统的响应。

经计算,得出该振动系统的响应(幅值单位为m)

(12)

激振力修正前的系统x、y方向的响应曲线如图4所示。

图4激振力修正前的系统响应曲线

1.激振力修正前的系统x方向的响应曲线

2.激振力修正前的系统y方向的响应曲线

很显然,筛体的振幅并没有达到5.5mm要求,这说明系统的激振力偏大。

为此需要对激振力进行修正,设修正参数为n,通过数值计算程序试验,可以得出当n=0.90144156937404时,筛体的振幅

与筛体的要求振幅

正好相等,说明此时刚好达到要求。

修正后的激振力

为厂方提供的一套激振器力数值。

从计算结果来看,激振器需要进行改动,以使筛体达到要求的振幅。

激振力修正后,系统x、y方向的响应(幅值单位为m)

(13)

激振力修正后的系统x、y方向的响应曲线如图5

图4激振力修正后的系统响应曲线

1.激振力修正后的系统x方向的响应曲线

2.激振力修正后的系统y方向的响应曲线

4.高速凸轮机构动态优化设计

随着计算机的广泛应用和应用软件的不断发展,凸轮机构的优化设计目益受到人们的重视,并已取得了一定的进展和成果。

这里以高速内燃机配气凸轮机构为例,探讨了从动件动态响应失真最小为目标函数进行高速凸轮机构动态优化设计的方法。

该方法不仅能使配气机构的丰满系数高,凸轮型线光滑、有较好的动态性能、而且能使配气机构的振动较小,噪声较低、传动链不发生脱开、气门不出现落座反跳等现象,能适应高速运动的需要。

4.1凸轮机构的动态数学模型

将高速柴油机的顶置式配气机构向气门侧简化,根据能量相等的原则得到该机构的单质鸯动力学模型,如图5所示,它由1个集中质量、2个弹簧和1个阻尼器组成的。

图5凸轮机构动态模型

当量质量的运动微分方程式为:

(14)

式中:

M为配气机构在气门侧的当量质量;

为凸轮轴的角速度:

为气门升程;K为配气机构的刚度;

为气门弹簧的刚度:

为气门弹簧的预压缩量;b为配气机构的阻尼系数。

4.2动态优化模型

4.2.1凸轮基本段型线的选择

凸轮缓冲段选用等加速一等速型线,设缓冲段的转角为

、等加速段的转角为

(15)

式中:

均为常数,

为缓冲段的凸轮升程

工作段选用6项动力凸轮型线,其气门的升程函数为:

(16)

式中:

为待定系数,由边界条件求出;

为幂指数;

为凸轮的半包角。

代入边界条件,可得:

(17)

从而有:

(18)

4.2.2幂指数的优化设计

为了获得较佳的动力学性能和良好的充气性能,气门升程方程的幂指数

不能任意选取,而必须优化组合。

在优化设计中,作为设计变量的

按各种等差级数可取得一系列数值,并可用3个变量n、m、l将它们联系起来:

(19)

式中:

l=4、6、8⋯;m=2、3、4⋯;n=2、4、6⋯。

4.2.3高速凸轮机构的优化设计

随着凸轮轮速的升高,由于从动件系统的弹性和惯性力的增大,使从动件的实际运动规律与凸轮机构所要求的运动之间存在着差异,这种差异将直接影响整机的工作质量,因而,在设计中应尽量减小这种差异,在动态优化设计时,要求从动件系统的实际响应(包括位移、速度、加速度)尽量逼近理论的运动规律,并按最小二乘法来建立目标函数。

设计变量:

目标函数:

(20)

式中:

N为计算点数;

为权系数。

约束条件:

(21)

式中:

为丰满系数;

为丰满系数的给定值;

气门落座速度;

为气门落座速度的给定值;

为气门的最大正加速度;

为气门的最大正加速度给定值;

气门的最大负加速度;

为气门的最大负加速度给定值;

为凸轮廓线最小瞳率半径;

为凸轮基圆半径;

为挺柱升程;

为凸轮廓线最小曲率半径给定值;

为凸轮轴转速;

为正加速度宽度;

为气门系统的自振频率。

5.结束语

本文以前人的几个比较有代表性研究成果来说明了动态优化设计在机械工程中的应用。

随着技术的进步,对产品性能的要求会越来越高,动态优化设计在实际工程中的应用也必然会越来越多,掌握动态优化设计理论的重要性也将是越来越大。

参考文献

[1]闻邦椿,韩清凯,姚红良等.产品的结构性能及动态优化设计[M],北京:

机械工业出版社,2008,1—12

[2]陈新,贾玉兰等.机械结构动态设计理论方法及应用[M],北京:

机械工业出版社.1997

[3]杨秀琴,杨家军等.浅谈机械结构动态优化设计及其相关技术[J].甘肃科技,2007,23(8):

117—118

[4]张文举,安子军等.基于振动理论的摆动活齿传动机构动态优化设计[J].机械设计,2009,26

(1):

33—36

[5]张楠,侯晓林,闻邦椿.基于动态优化设计方法振动筛设计的研究[J].煤矿机械,2008,29(3):

12—15

[6]洪家娣,施振邦等.高速凸轮机构动态优化设计研究[J].华东交通大学学报,1999,16

(1):

31—35

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2