太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx

上传人:b****3 文档编号:3969727 上传时间:2023-05-06 格式:DOCX 页数:13 大小:28.14KB
下载 相关 举报
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第1页
第1页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第2页
第2页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第3页
第3页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第4页
第4页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第5页
第5页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第6页
第6页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第7页
第7页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第8页
第8页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第9页
第9页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第10页
第10页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第11页
第11页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第12页
第12页 / 共13页
太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx

《太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx》由会员分享,可在线阅读,更多相关《太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx(13页珍藏版)》请在冰点文库上搜索。

太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点.docx

太阳能微动力污水处理工艺AO工艺氧化沟工艺SBR工艺的优缺点

太阳能微动力污水处理工艺、AO工艺,氧化沟工艺,SBR工艺、优缺点?

 

太阳能微动力污水处理工艺

生活污水含纤维素、淀粉、糖类、脂肪、蛋白质等有机类物质,还含有氮、磷等无机盐类,其BOD5浓度约为:

100~250mg/L之间,其生化性较好,通常情况下生活污水的处理都是采用生物处理的方法。

本工程采用太阳能微动力污水处理工艺。

太阳能微动力污水处理技术是以传统“A2/O”工艺为基础,利用太阳能光伏板光电转换技术,为污水处理中的曝气、回流等提供动力。

同时,要求设备运行管理具有智能化,通过远程通信技术,能实现设备的实时在线监控,达到远程控制、无人值守的目的。

同时吸纳“A2/O”工艺中的关键因素,即可结合市政电网也可完全脱离市政电网给系统提供动力,整合开发形成的一种全新工艺,该工艺采用现代先进技术与环保工程的有机结合,从整体上采用了自动化的控制,自动运行,为农村污水处理工程的有效运行提供了有力的支持。

太阳能微动力污水处理技术以太阳能发电为主,市政电网为辅,在阳光充足的时候能为电网供电,在长期阴雨天的情况下,从电网取电,满足系统所需动力要求。

利用太阳能光电转换技术,为农村生活污水处理中的增氧曝气、搅拌、回流等提供动力,实现废水深度可靠处理。

同时,将设备运行管理智能化,远程控制,远程监控,实现无人值守,以适应农村基层缺乏专业技术管理人员的实际情况。

工艺流程说明

集中收集而来的污水首先进入污水处理系统内的厌氧池,在厌氧池内污水完成水解酸化过程、产乙酸过程。

通过水解和酸化过程,提高原污水的可生化性,从而减少后续反应的时间和处理的能耗。

经过厌氧池处理的污水进入缺氧池。

缺氧池内利用兼氧微生物来降解废水中的污染物。

从好氧池回流的硝化液含有一定的溶解氧,改变了污水中的溶氧浓度,使污水形成较好的缺氧环境,反硝化菌在缺氧池利用新进入的污水中丰富的有机物作碳源进行反硝化反应,将回流混合液中的大量NO3-N和NO2-N还原为N2释放至空气,实现污水的脱氮。

接着污水进入生物接触氧化池,对污水中的有机物实行进一步的降解。

设计采用生物膜法中的生物接触氧化法作为好氧处理的工序。

生物接触氧化法又称淹没式生物滤池,是活性污泥法与生物滤池复合的生物膜法,池内设有填料,填料上长满生物膜,经过人工曝气的污水以一定的流速流过池内填料,通过与生物膜的不断接触,在生物膜的作用下,污水得到净化。

在生物接触氧化池中,通过曝气设备对池内污水进行适当曝气,在生物接触氧化池内进行好氧生化处理。

在好氧生化处理中,有机物被微生物进一步生化降解,浓度继续下降;氨氮被硝化,NH3-N浓度显著下降,随着硝化过程的进行,污水中NO3-N的浓度增加;活性污泥中聚磷菌在好氧条件下大量吸收污水中的磷,把它转化成不溶性多聚正磷酸盐在体内贮存起来,最后通过沉淀池排放剩余污泥达到系统除磷的目的。

在经过接触好氧反应后,污水中的污染有机物已经被微生物基本消解,进入沉淀池进行沉淀,利用重力沉降将污水中的悬浮颗粒从水中去除,降低污水中悬浮物的浓度。

最后污水进入消毒池,杀灭污水中的大肠菌等细菌后达标排放。

系统产生的剩余污泥委托环卫部门定期外运。

太阳能微动力污水处理系统具有下列特点:

(一)采用太阳能绿色能源,符合国家产业政策。

(二)光电一体化技术的运用,采用太阳能提供动力,无需用电,几乎无运行费用,同时,保证系统长期稳定运行,通过与电网的有效结合,削峰填谷,既符合国家政策导向,又实现运行成本最小化。

(三)增加了回流与曝气,具有脱氮除磷功能,出水水质好。

(四)采用了A2/O工艺。

可计入国家节能减排计划。

(五)微电脑自动控制系统与远程在线监控系统的运用,实现在线通讯,远程故障报警、远程故障排除等,无需人管理,解决了乡镇和农村缺乏专业运行管理人员的现实问题,整个系统可以实现无人值守。

(六)无噪声、臭氧等二次污染

(七)、该工艺不受污水浓度和水量的限制,只要有进水,就能保证出水合格

(八)系统结构紧凑、占地面积小,大大节省了土地资源,地面上可以做绿化。

(九)除本方案介绍的太阳能光电一体技术外,带有储电功能的太阳能技术也是污水工程常用的选择。

该技术完全脱离市政电网单独运行,系统运行所需电力全由太阳能板提供,但需增加储电系统,满足在阴雨天等光照不足的条件下系统正常运行,蓄电系统可以满足连续7天阴雨天气供电功能。

(九)太阳能光伏板使用寿命20-25年

太阳能污水处理与其他工艺的比较

序号

比较项目

传统处理工艺

人工湿地处理工艺

无动力处理工艺

太阳能处理工艺

1

投资

2

占地面积

130m²

660m²

2500m²

130m²

130m²

3

运行费用

0.54

0.30

0.11

4

运行寿命

10年

5年

10年

25年

5

运行维护

需人工清理底泥

需人工湿地维护

需人工清理底泥

无需人工操作

6

出水水质

一级B标

一级B标

仅在气候适宜时

国家三级标准

一级A标

7

是否具有脱氮磷

部分脱氮除磷

部分脱氮

具有脱氮除磷

8

可否计入国家节能减排的目标

9

运行监控管理

10

故障率

据此,本农村村镇太阳能微动力处理技术,解决了常规微动力处理技术采用常规电,需要电费,需要专业操作维护人员进行操作管理的不便。

解决了湿地处理技术占地面积大,季节性强,植被维护投入大的缺点。

也解决了无动力处理技术出水水质差,对氮磷去除差,有臭味的缺陷。

此太阳能微动力技术的投入费用与常规农村生活污水处理技术可降低10~20%,而运行采用绿色太阳能,运行费用为0,是其它处理工艺所不能比拟的。

所以,无论从经济性、可靠性出发,本技术都是解决当前农村污水处理难题的有效途径。

浙江浙大水业有限公司经过五年的时间,研究出采用太阳能微动处理生活污水的技术技术并申请了发明专利(专利号:

2000年-1467996、2010-802404),并已成功建成几千个村镇污水处理站,技术已经非常成熟,且已经在浙江省全面推广和使用,以及安徽、河北、天津也已经在大量采用此技术处理乡镇、农村生活污水。

几千例乡镇、村污水处理站的建设和运行,实践论证结果,太阳能处理污水技术成熟、可靠、安全,应该是属于目前乡、镇、村污水处理工艺里最为先进的技术工艺了。

 

AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。

A/O法脱氮工艺的特点:

(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;

(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;

(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;

(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。

O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。

A/O法存在的问题:

1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;

2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。

从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%

3、影响因素水力停留时间(硝化>6h,反硝化<2h)循环比MLSS(>3000mg/L)污泥龄(>30d)N/MLSS负荷率(<0.03)进水总氮浓度(<30mg/L)

氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。

它是活性污泥法的一种变型。

因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。

氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。

以下为一般氧化沟法的主要设计参数:

水力停留时间:

10-40小时;

污泥龄:

一般大于20天;

有机负荷:

0.05-0.15kgBOD5/(kgMLSS.d);

容积负荷:

0.2-0.4kgBOD5/(m3.d);

活性污泥浓度:

2000-6000mg/l;

沟内平均流速:

0.3-0.5m/s

1.2氧化沟的技术特点:

氧化沟利用连续环式反应池(CintinuousLoopReator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。

氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。

氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。

氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。

因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。

氧化沟能保证较好的处理效果,这主要是因为巧妙结合了CLR形式和曝气装置特定的定位布置,是式氧化沟具有独特水力学特征和工作特性:

1)氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。

入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕CLR继续循环。

这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。

这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。

同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内由较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。

2)氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。

氧化沟从整体上说又是完全混合的,而液体流动却保持着推流前进,其曝气装置是定位的,因此,混合液在曝气区内溶解氧浓度是上游高,然后沿沟长逐步下降,出现明显的浓度梯度,到下游区溶解氧浓度就很低,基本上处于缺氧状态。

氧化沟设计可按要求安排好氧区和缺氧区实现硝化-反硝化工艺,不仅可以利用硝酸盐中的氧满足一定的需氧量,而且可以通过反硝化补充硝化过程中消耗的碱度。

这些有利于节省能耗和减少甚至免去硝化过程中需要投加的化学药品数量。

3)氧化沟沟内功率密度的不均匀配备,有利于氧的传质,液体混合和污泥絮凝。

传统曝气的功率密度一般仅为20-30瓦/米3,平均速度梯度G大于100秒-1。

这不仅有利于氧的传递和液体混合,而且有利于充分切割絮凝的污泥颗粒。

当混合液经平稳的输送区到达好氧区后期,平均速度梯度G小于30秒-1,污泥仍有再絮凝的机会,因而也能改善污泥的絮凝性能。

4)氧化沟的整体功率密度较低,可节约能源。

氧化沟的混合液一旦被加速到沟中的平均流速,对于维持循环仅需克服沿程和弯道的水头损失,因而氧化沟可比其他系统以低得多的整体功率密度来维持混合液流动和活性污泥悬浮状态。

据国外的一些报道,氧化沟比常规的活性污泥法能耗降低20%-30%。

另外,据国内外统计资料显示,与其他污水生物处理方法相比,氧化沟具有处理流程简单,超作管理方便;出水水质好,工艺可靠性强;基建投资省,运行费用低等特点。

传统氧化沟的脱氮,主要是利用沟内溶解氧分布的不均匀性,通过合理的设计,使沟中产生交替循环的好氧区和缺氧区,从而达到脱氮的目的。

其最大的优点是在不外加碳源的情况下在同一沟中实现有机物和总氮的去除,因此是非常经济的。

但在同一沟中好氧区与缺氧区各自的体积和溶解氧浓度很难准确地加以控制,因此对除氮的效果是有限的,而对除磷几乎不起作用。

另外,在传统的单沟式氧化沟中,微生物在好氧-缺氧-好氧短暂的经常性的环境变化中使硝化菌和反硝化菌群并非总是处于最佳的生长代谢环境中,由此也影响单位体积构筑物的处理能力。

氧化沟缺点

尽管氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。

但是,在实际的运行过程中,仍存在一系列的问题。

4.1污泥膨胀问题

当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。

微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。

针对污泥膨胀的起因,可采取不同对策:

由缺氧、水温高造成的,可加大曝气量或降低进水量以减轻负荷,或适当降低MLSS(控制污泥回流量),使需氧量减少;如污泥负荷过高,可提高MLSS,以调整负荷,必要时可停止进水,闷曝一段时间;可通过投加氮肥、磷肥,调整混合液中的营养物质平衡(BOD5:

N:

P=100:

5:

1);pH值过低,可投加石灰调节;漂白粉和液氯(按干污泥的0.3%~0.6%投加),能抑制丝状菌繁殖,控制结合水性污泥膨胀[11]。

4.2泡沫问题

由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。

用表面喷淋水或除沫剂去除泡沫,常用除沫剂有机油、煤油、硅油,投量为0.5~1.5mg/L。

通过增加曝气池污泥浓度或适当减小曝气量,也能有效控制泡沫产生。

当废水中含表面活性物质较多时,易预先用泡沫分离法或其他方法去除。

另外也可考虑增设一套除油装置。

但最重要的是要加强水源管理,减少含油过高废水及其它有毒废水的进入

4.3污泥上浮问题

当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。

发生污泥上浮后应暂停进水,打碎或清除污泥,判明原因,调整操作。

污泥沉降性差,可投加混凝剂或惰性物质,改善沉淀性;如进水负荷大应减小进水量或加大回流量;如污泥颗粒细小可降低曝气机转速;如发现反硝化,应减小曝气量,增大回流或排泥量;如发现污泥腐化,应加大曝气量,清除积泥,并设法改善池内水力条件

4.4流速不均及污泥沉积问题

在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。

一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3~0.5m/s。

氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm,转盘的浸没深度为480~530mm。

与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。

加装上、下游导流板是改善流速分布、提高充氧能力的有效方法和最方便的措施。

上游导流板安装在距转盘(转刷)轴心4.0处(上游),导流板高度为水深的1/5~1/6,并垂直于水面安装;下游导流板安装在距转盘(转刷)轴心3.0m处。

导流板的材料可以用金属或玻璃钢,但以玻璃钢为佳。

导流板与其他改善措施相比,不仅不会增加动力消耗和运转成本,而且还能够较大幅度地提高充氧能力和理论动力效率

另外,通过在曝气机上游设置水下推动器也可以对曝气转刷底部低速区的混合液循环流动起到积极推动作用,从而解决氧化沟底部流速低、污泥沉积的问题。

设置水下推动器专门用于推动混合液可以使氧化沟的运行方式更加灵活,这对于节约能源、提高效率具有十分重要的意义。

序批式活性污泥法(SBR-SequencingBatchReactor)是早在1914年英国学者Ardern和Lockett发明活性污泥法之时,首先采用的水处理工艺。

70年代初,美国NatreDame大学的R.Irvine教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印地安那州的Culver城改建并投产了世界上第一个SBR法污水处理厂。

80年代前后,由于自动化计算机等高新技术的迅速发展以及在污水处理领域的普及与应用,此项技术获得重大进展,使得间歇活性污泥法(也称"间歇式活性污泥法")的运行管理也逐渐实现了自动化。

1工艺简介

SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:

进水、曝气、沉淀、滗水、闲置。

由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。

对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。

因此,SBR工艺发展速度极快,并衍生出许多新型SBR处理工艺。

90年代比利时的SEGHERS公司又开发了UNITANK系统,把经典SBR的时间推流与连续的空间推流结合了起来[2]SBR工艺主要有以下变形。

间歇式循环延时曝气活性污泥法最大特点是:

在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统SBR低。

由于全过程连续进水,沉淀阶段泥水分离差,限制了进水量。

好氧间歇曝气系统(主体构筑物是由需氧池DAT池和间歇曝气池IAT池组成,DAT池连续进水连续曝气,其出水从中间墙进入IAT池,IAT池连续进水间歇排水。

同时,IAT池污泥回流DAT池。

它具有抗冲击能力强的特点,并有除磷脱氮功能。

循环式活性污泥法将ICEAS的预反应区用容积更小,设计更加合理优化的生物选择器代替。

通常CASS池分三个反应区:

生物选择器、缺氧区和好氧区,容积比一般为1:

5:

30。

整个过程连续间歇运行,进水、沉淀、滗水、曝气并污泥回流。

该处理系统具有除氮脱磷功能。

UNITANK单元水池活性污泥处理系统它集合了SBR工艺和氧化沟工艺的特点,一体化设计使整个系统连续进水连续出水,而单个池子相对为间歇进水间歇排水。

此系统可以灵活的进行时间和空间控制,适当的增大水力停留时间,可以实现污水的脱氮除磷。

改良式序列间歇反应器(MSBR-ModifiedSequencingBatchReactor)是80年代初期根据SBR技术特点结合A2-O工艺,研究开发的一种更为理想的污水处理系统,目前最新的工艺是第三代工艺。

MSBR工艺中涉及的部分专利技术目前属于美国的Aqua-AerobicSystemInc.所有[4]。

反应器采用单池多方格方式,在恒定水位下连续运行。

脱氮除磷能力更强。

2SBR工艺特点:

SBR工艺是通过时间上的交替来实现传统活性污泥法的整个运行过程,它在流程上只有一个基本单元,将调节池、曝气池和二沉池的功能集于一池,进行水质水量调节、微生物降解有机物和固、液分离等。

经典SBR反应器的运行过程为:

进水→曝气→沉淀→滗水→待机。

2.1理论分析:

SBR反应池充分利用了生物反应过程和单元操作过程的基本原理。

①流态理论

由于SBR在时间上的不可逆性,根本不存在返混现象,所以属于理想推流式反应器。

②理想沉淀理论

其沉淀效果好是因为充分利用了静态沉淀原理。

经典的SBR反应器在沉淀过程中没有进水的扰动,属于理想沉淀状态。

③推流反应器理论

假设在推流式和完全混合式反应器中有机物降解服从一级反应,那么在相同的污泥浓度下,两种反应器达到相同的去除率时所需反应器容积比为:

V完全混合/V推流=[(1-(1/1-η))]/〔ln(1-η)〕

(1)

式中η--去除率

从数学上可以证明当去除率趋于零时V完全混合/V推流等于1,其他情况下(V完全混合/V推流)>1,就是说达到相同的去除率时推流式反应器要比完全混合式反应器所需的体积小,表明推流式的处理效果要比完全混合式好。

④选择性准则

1973年Chudoba等人提出了在活性污泥混合培养中的动力学选择性准则[5,这个理论是基于不同种属的微生物在Monod方程中的参数(KS、μmax)不同,并且不同基质的生长速度常数也不同。

Monod方程可以写成:

dX/Xdt=μ=μmax[S/(KS+S)]

(2)

式中X--生物体浓度

S--生长限制性基质浓度

KS--饱和或半速度常数

μ、μmax--分别为实际和最大比增长速率

按照Chudoba所提出的理论,具有低KS和μmax值的微生物在混合培养的曝气池中,当基质浓度很低时其生长速率高并占有优势,而基质浓度高时则恰好相反。

Chudoba认为大多数丝状菌的KS和μmax值比较低,而菌胶团细菌的KS和μmax值比较高,这也解释了完全混合曝气池容易发生污泥膨胀的原因。

有机物浓度在推流式曝气池的整个池长上具有一定的浓度梯度,使得大部分情况下絮状菌的生长速率都大于丝状菌,只有在反应末期絮状菌的生长没有丝状菌快,但丝状菌短时间内的优势生长并不会引起污泥膨胀。

因此,SBR系统具有防止污泥膨胀的功能。

⑸微生物环境的多样性

SBR反应器对有机物去除效果好,而对难降解有机物降解效果好是因为其在生态环境上具有多样性,具体讲可以形成厌氧、缺氧等多种生态条件,从而有利于有机物的降解。

2.2传统SBR工艺的缺点

①连续进水时,对于单一SBR反应器需要较大的调节池。

②对于多个SBR反应器,其进水和排水的阀门自动切换频繁。

③无法达到大型污水处理项目之连续进水、出水的要求。

④设备的闲置率较高。

⑤污水提升水头损失较大。

⑥如果需要后处理,则需要较大容积的调节池。

2.3SBR的适用范围

SBR系统进一步拓宽了活性污泥的使用范围。

就近期的技术条件,SBR系统更适合以下情况:

1)中小城镇生活污水和厂矿,尤其是间歇排放和流量变化较大的地方。

2)需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。

3)水资源紧缺的地方。

SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。

4)用地紧张的地方。

5)对已建连续流污水处理厂的改造等。

6)非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。

近期来随着SBR工艺的发展,特别是连续进水、连续出水方案的改进,使SBR工艺以应用于大中心污水处理厂。

3.1负荷法

该法与连续式曝气池容积的设计相仿。

已知SBR反应池的容积负荷NV或污泥负荷NS、进水量Q0及进水中BOD5浓度C0,即可由下式迅速求得SBR池容:

容积负荷法V=nQ0C0/Nv(3)

Vmin=〔SVI·MLSS/106〕·V

污泥负荷法Vmin=nQ0C0·SVI/Ns(4)

V=Vmin+Q0

3.2曝气时间内负荷法

鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下式:

容积负荷法V=nQ0C0tc/Nv·ta(5)

污泥负荷法V=24QC0/nta·MLSS·NS(6)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2