comsol等离子体放电二维模型.docx

上传人:b****3 文档编号:4014392 上传时间:2023-05-06 格式:DOCX 页数:28 大小:27.19KB
下载 相关 举报
comsol等离子体放电二维模型.docx_第1页
第1页 / 共28页
comsol等离子体放电二维模型.docx_第2页
第2页 / 共28页
comsol等离子体放电二维模型.docx_第3页
第3页 / 共28页
comsol等离子体放电二维模型.docx_第4页
第4页 / 共28页
comsol等离子体放电二维模型.docx_第5页
第5页 / 共28页
comsol等离子体放电二维模型.docx_第6页
第6页 / 共28页
comsol等离子体放电二维模型.docx_第7页
第7页 / 共28页
comsol等离子体放电二维模型.docx_第8页
第8页 / 共28页
comsol等离子体放电二维模型.docx_第9页
第9页 / 共28页
comsol等离子体放电二维模型.docx_第10页
第10页 / 共28页
comsol等离子体放电二维模型.docx_第11页
第11页 / 共28页
comsol等离子体放电二维模型.docx_第12页
第12页 / 共28页
comsol等离子体放电二维模型.docx_第13页
第13页 / 共28页
comsol等离子体放电二维模型.docx_第14页
第14页 / 共28页
comsol等离子体放电二维模型.docx_第15页
第15页 / 共28页
comsol等离子体放电二维模型.docx_第16页
第16页 / 共28页
comsol等离子体放电二维模型.docx_第17页
第17页 / 共28页
comsol等离子体放电二维模型.docx_第18页
第18页 / 共28页
comsol等离子体放电二维模型.docx_第19页
第19页 / 共28页
comsol等离子体放电二维模型.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

comsol等离子体放电二维模型.docx

《comsol等离子体放电二维模型.docx》由会员分享,可在线阅读,更多相关《comsol等离子体放电二维模型.docx(28页珍藏版)》请在冰点文库上搜索。

comsol等离子体放电二维模型.docx

comsol等离子体放电二维模型

SolvedwithCOMSOLMultiphysics5.2

DCGlowDischarge

Introduction

DCglowdischargesinthelowpressureregimehavelongbeenusedforgaslasersand

fluorescentlamps.DCdischargesareattractivetostudybecausethesolutionistime

independent.ThismodelshowshowtousetheDCDischargeinterfacetosetupan

analysisofapositivecolumn.Thedischargeissustainedbyemissionofsecondary

electronsatthecathode.

ModelDefinition

TheDCdischargeconsistsoftwoelectrodes,onepowered(theanode)andone

grounded(thecathode).Thepositivecolumniscoupledtoanexternalcircuit:

1000Ω

CathodePlasmaAnode

1pF

V

Figure1:

SchematicoftheDCdischargeandexternalcircuit.

DOMAINEQUATIONS

Theelectrondensityandmeanelectronenergyarecomputedbysolvingapairof

drift-diffusionequationsfortheelectrondensityandmeanelectronenergy.

Convectionofelectronsduetofluidmotionisneglected.Fordetailedinformationon

electrontransportseeTheoryfortheDriftDiffusionInterfaceinthePlasmaModule

User’sGuide.

∂n

()+∇⋅[–ne(μe•E)–De•∇ne]=Re

∂t

e

∂n

()+∇⋅[–nε(με•E)–Dε•∇nε]+E⋅Γe=Rε

ε

∂t

where:

1|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

Γe=–(μe•E)ne–De•∇ne

TheelectronsourceReandtheenergylossduetoinelasticcollisionsRεaredefinedlater.Theelectrondiffusivity,energymobilityandenergydiffusivityarecomputedfromtheelectronmobilityusing:

De=μeTe,με

5

μ

=--,Dε=μεTe

e

3

Thesourcecoefficientsintheaboveequationsaredeterminedbytheplasmachemistry

usingratecoefficients.SupposethatthereareMreactionswhichcontributetothe

growthordecayofelectrondensityandPinelasticelectron-neutralcollisions.In

generalP>>M.Inthecaseofratecoefficients,theelectronsourcetermisgivenby:

Re=xjkjNnne

j=1

wherexjisthemolefractionofthetargetspeciesforreactionj,kjistheratecoefficient

forreactionj(m3/s),andNnisthetotalneutralnumberdensity(1/m3).ForDCdischargesitisbetterpracticetouseTownsendcoefficientsinsteadofratecoefficientstodefinereactionrates.Townsendcoefficientsprovideabetterdescriptionofwhat

happensinthecathodefallregionRef1.WhenTownsendcoefficientsareused,the

electronsourcetermisgivenby:

Re=xjαjNnΓe

j=1

whereαjistheTownsendcoefficientforreactionj(m2)andΓeistheelectronfluxas

definedabove(1/(m2·s)).TownsendcoefficientscanincreasethestabilityofthenumericalschemewhentheelectronfluxisfielddrivenasisthecasewithDC

discharges.Theelectronenergylossisobtainedbysummingthecollisionalenergyloss

overallreactions:

Rε=xjkjNnneΔεj

j=1

whereΔεjistheenergylossfromreactionj(V).Theratecoefficientsmaybecomputed

fromcrosssectiondatabythefollowingintegral:

2|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.2

kkγεσk(ε)f(ε)dε

=

0

whereγ=(2q/me)1/2(C1/2/kg1/2),meistheelectronmass(kg),εisenergy(V),σk

isthecollisioncrosssection(m2)andfistheelectronenergydistributionfunction.InthiscaseaMaxwellianEEDFisassumed.WhenTownsendcoefficientsareused,the

electronenergylossistakenas:

Rε=xjαjNnΓeΔεj

j=1

Fornon-electronspecies,thefollowingequationissolvedforthemassfractionofeach

species.Fordetailedinformationonthetransportofthenon-electronspeciessee

TheoryfortheHeavySpeciesTransportInterfaceinthePlasmaModuleUser’s

Guide.

∂wρ

()+ρ(u⋅∇)wk=∇⋅jk+Rk

∂t

k

Theelectrostaticfieldiscomputedusingthefollowingequation:

–∇⋅ε0εr∇V=ρ

Thespacechargedensityρisautomaticallycomputedbasedontheplasmachemistry

specifiedinthemodelusingtheformula:

nρ=qZknk

e

k=1

FordetailedinformationaboutelectrostaticsseeTheoryfortheElectrostaticsInterfaceinthePlasmaModuleUser’sGuide.

BOUNDARYCONDITIONS

UnlikeRFdischarges,themechanismforsustainingthedischargeisemissionof

secondaryelectronsfromthecathode.Anelectronisemittedfromthecathodesurface

withaspecifiedprobabilitywhenstruckbyanion.Theseelectronsarethenaccelerated

bythestrongelectricfieldclosetothecathodewheretheyacquireenoughenergyto

initiateionization.Thenetresultisarapidincreaseintheelectrondensityclosetothe

cathodeinaregionoftenknownasthecathodefallorCrookesdarkspace.

3|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

Electronsarelosttothewallduetorandommotionwithinafewmeanfreepathsof

thewallandgainedduetosecondaryemissioneffects,resultinginthefollowing

boundaryconditionfortheelectronflux:

–n⋅Γe

=

1

γ

-p(Γp⋅n)

-νe,thne

2

p

(1)

andtheelectronenergyflux:

–n⋅Γε

=

5

ε

--νe,thnε–pγp(Γp⋅n)

6

p

(2)

Thesecondtermontheright-handsideofEquation1isthegainofelectronsduetosecondaryemissioneffects,γpbeingthesecondaryemissioncoefficient.ThesecondterminEquation2isthesecondaryemissionenergyflux,εpbeingthemeanenergyofthesecondaryelectrons.Fortheheavyspecies,ionsarelosttothewallduetosurfacereactionsandthefactthattheelectricfieldisdirectedtowardsthewall:

–⋅jk=MwRk+MwckZμk(E⋅n)[Zkμk(E⋅n)>0]

n

PLASMACHEMISTRY

Argonisoneofthesimplestmechanismstoimplementatlowpressures.The

electronicallyexcitedstatescanbelumpedintoasinglespecieswhichresultsina

chemicalmechanismconsistingofonly3speciesand7reactions:

TABLE1:

TABLEOFCOLLISIONSANDREACTIONSMODELED

REACTIONFORMULATYPE

Δε(eV)

1e+Ar=>e+ArElastic0

2e+Ar=>e+ArsExcitation11.5

3e+Ars=>e+ArSuperelastic-11.5

4e+Ar=>2e+Ar+Ionization15.8

5e+Ars=>2e+Ar+Ionization4.24

6Ars+Ars=>e+Ar+Ar+Penningionization-

7Ars+Ar=>Ar+ArMetastablequenching-

4|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.2

InaCCPreactortheelectrondensityanddensityofexcitedspeciesisrelativelylowso

stepwiseionizationisnotasimportantasinhighdensitydischarges.Inadditionto

volumetricreactions,thefollowingsurfacereactionsareimplemented:

TABLE2:

TABLEOFSURFACEREACTIONS

REACTIONFORMULASTICKINGCOEFFICIENT

1Ars=>Ar1

2Ar+=>Ar1

Whenametastableargonatommakescontactwiththewall,itrevertstotheground

stateargonatomwithsomeprobability(thestickingcoefficient).

ResultsandDiscussion

Theelectricpotential,electrondensityandmeanelectronenergyareallquantitiesof

interest.Mostofthevariationineachofthesequantitiesoccursalongtheaxiallength

ofthecolumn.Figure2plotstheelectrondensityinthecolumn.Theelectrondensity

peaksintheregionbetweenthecathodefallandpositivecolumn.Thisregionis

sometimesreferredtoasFaradaydarkspace.Theelectrondensityalsodecreases

rapidlyintheradialdirection.Theiscausedbydiffusivelossofelectronstotheouter

5|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

wallsofthecolumnwheretheyaccumulateasurfacecharge.Thebuildupofnegative

chargeleadstoapositivepotentialinthecenterofthecolumnwithrespecttothewalls.

Figure2:

Surfaceplotofelectrondensityinsidethecolumn.

InFigure4theelectricpotentialisplottedalongtheaxiallengthofthecolumn.Notice

thatthepotentialprofileismarkedlydifferentfromthelineardropinpotentialwhich

resultsintheabsenceoftheplasma.Thestrongelectricfieldinthecathoderegioncan

leadtohighenergyionbombardmentofthecathode.Heatingofthecathodesurface

6|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.2

occurswhichmayinturnleadtothermalelectronemissionwhereadditionalelectrons

areemittedfromthecathodesurface.

Figure3:

Plotofelectron“temperature”alongtheaxiallengthofthepositivecolumn.

7|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

Figure4:

Plotoftheelectricpotentialalongtheaxiallengthofthepositivecolumn.

8|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.2

Figure5:

Plotofelectricpotentialalongtheaxiallengthofthepositivecolumn.

Figure6:

Plotoftheelectrontemperaturealongtheaxiallengthofthepositivecolumn.

9|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

Figure7:

Plotoftheelectrondensityalongtheaxiallengthofthepositivecolumn.

Figure8:

Plotofthenumberdensityofexcitedargonatoms.

10|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.2

Figure9:

Plotofthenumberdensityofargonions.

Reference

1.M.A.LiebermanandA.J.Lichtenberg,PrinciplesofPlasmaDischargesand

MaterialsProcessing,JohnWiley&Sons,2005.

ApplicationLibrarypath:

Plasma_Module/Direct_Current_Discharges/

positive_column_2d

ModelingInstructions

FromtheFilemenu,chooseNew.

NEW

1IntheNewwindow,clickModelWizard.

11|DCGLOWDISCHARGE

SolvedwithCOMSOLMultiphysics5.1

MODELWIZARD

1IntheModelWizardwindow,click2DAxisymmetric.

2IntheSelectphysicstree,selectPlasma>DCDischarge(dc).

3ClickAdd.

4ClickStudy.

5IntheSelectstudytree,selectPresetStudies>TimeDependent.

6ClickDone.

GEOMETRY1

Rectangle1(r1)

1OntheGeometrytoolbar,clickPrimitivesandchooseRectangle.

2IntheSettingswindowforRectangle,locatetheSizeandShapesection.

3IntheWidthtextfield,type0.05.

4IntheHeighttextfield,type0.4.

Rectangle2(r2)

1OntheGeometrytoolba

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2