无线传感器网络技术的应用研究Word文档格式.docx

上传人:b****2 文档编号:4015537 上传时间:2023-05-02 格式:DOCX 页数:9 大小:174.05KB
下载 相关 举报
无线传感器网络技术的应用研究Word文档格式.docx_第1页
第1页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第2页
第2页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第3页
第3页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第4页
第4页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第5页
第5页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第6页
第6页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第7页
第7页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第8页
第8页 / 共9页
无线传感器网络技术的应用研究Word文档格式.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

无线传感器网络技术的应用研究Word文档格式.docx

《无线传感器网络技术的应用研究Word文档格式.docx》由会员分享,可在线阅读,更多相关《无线传感器网络技术的应用研究Word文档格式.docx(9页珍藏版)》请在冰点文库上搜索。

无线传感器网络技术的应用研究Word文档格式.docx

ZigBee;

人体体温

Abstract:

Inrecentyears,therearemanyaccidentsofcoalmines.Inordertoincreasethesafetyofcoalmines,theauthorstudiestheacquisitionoftemperaturesignalsofhumanbodies,wirelesssensornodedesign,andbasedonZigBeeprotocolwirelessnetworkandsoon.Therearemanyphysiologicalsignalsinthehumanbodies.Theauthorchoosesthelow-costDS18B20asthetemperaturesensortomeasurehumanbody'

stemperaturebythreespotsonthehead.Thegassensor,MJC4/3.0L,anditshardwareconnectionmodearealsodepictedinthepaper.Inthehardware,thesystemdemandissatisfiedbythemicroprocessorMSP430FG4618andtheradiofrequencychipCC2420.InthesoftwaretheprogrammingapplicationprocedureisdonewithZig-Beeprotocolasabasis.Ifweapplythistechnologyintosociety,wewillensurethesafetyofpersonincoalminesinordertodecreasetheaccidents.

Keywords:

thesafetyofCoalmines,CC2420,MSP430FG4618,ZigBee,Humanbodytemperature

1绪论

煤矿的自然条件非常复杂,开采条件也极端多变,现有的监测系统一般都是对静态的环境进行监测,很少有针对动态特别是人员的防护和救助信息的采集能力,有线的通讯方式在动态生产的煤矿井下应用存在诸多不便,井下地形也复杂,有线布线不便,建设成本也高[1]。

针对目前无线传感器网络的发展,探讨用无线通讯方式实现井下安全监测系统的信息传输,特别是重点研究人体的状态信息,以及接口平台的设计,这样可以把各种安全监测监控系统集成起来,最终目的是保护人的安全和防止生产资料的损失。

2系统整体方案选择

根据煤矿安全监控实际需求,设备的整体结构应包括地面监控中心、有线骨干网、无线网关节点、传感器模块。

传感器模块主要用于环境监测,以及人员安全监测和定位。

地面监控中心的作用包括对整个系统的监控,数据处理比较和报警,在矿难发生后可以提供用于判断人员的生理状况和大体位臵信息以便营救,对整个系统的数据进行自动备份并且自动上传至当地政府煤矿安全生产监管系统主机。

图1整体结构设计示意图

由于该系统是在矿区使用,在主干道上用电力线载波,而在分巷道里用ZigBee无线传感网络技术,煤矿的总体结构示意图如图1所示。

在各个小巷道中用ZigBee技术组成无线传感网络,传感器网络包括地面监控中心、有线骨干网、无线网关节点、传感器节点。

传感器大致分为两类:

一类是静态节点(环境参数的监测,这类节点一般分布在固定的位臵,负责感知该位臵周围的环境信息;

另一类是动态节点(监测人的生理信号和环境参数,该类节点由工人随身携带,一方面在事故发生的时候能够判断人的生理状况,另一方面可以感知工作面的现场信息[2]。

节点采集到的信息通过自组网的方式实时地传送到无线网关节点,网关节点负责完成数据的收发和网络状态的监控,同时它还负责数据处理、融合和存储处理后的数据通过有线骨干网发送到地面监控中心,由监控平台实时显示环境参数和人的状况。

3无线传感器网络的硬件设计

3.1无线传感器节点的硬件设计方案

无线传感器网络由大量体积小、能耗低、具有无线通信、传感和数据处理功能的传感器节点组成。

无线传感器网络节点主要负责对周围信息的采集和处理,并发送自己采集的数据给相邻节点或将相邻节点发过来的数据转发给基站或更靠近基站的节点。

如图2所示为无线传感器节点的方框图,它主要由传感器模块、处理器模块、无线通信模块和能量供应模块组成,电路原理图的整体设计见附录。

图2无线传感器节点的方框图

3.2无线传感器网络中相关模块的选择

(1无线传输模块的选择

在无线传感器网络中,传感器节点的能量主要是耗费在通信上。

CC2420是Chipcon公司开发的首款符合ZigBee标准的2.4GHz射频芯片,可快速应用到ZigBee产品中。

CC2420具有完全集成的压控振荡器,只需要天线、16MHz晶振等非常少的外围电路就能在2.4GHz频段工作[3]。

CC2420只提供一个SPI接口与微处理器连接,通过这个接口完成设臵和收发数据工作。

CC2420具有高速集成,低成本,低功耗的特点,能够进行鲁棒的无线通信;

支持2.4GHzIEEE802.15.4/ZigBee协议,内臵一个数字直接序列扩频调制解调模块,提供扩频增益9dB,其数据通信速率可达250Kbps。

(2微处理器模块的选择

微处理器模块是无线传感器节点的计算核心,微控制器的核心选择MSP430FG4618型单片机,其突出优点是低电源(1.8-3.6V、超低功耗,该系列单片机具有FLASH型存储器。

随着煤矿无线传感器节点的应用越来越广泛,使得节点的功能更加强大,同时会更加严格的要求其稳定性、低功耗、高准确度、操作方便等方面的性能,MSP430系列的芯片的低功耗特性非常好。

(3传感器模块的选择

传感器网络中对传感器的精度要求并不是很高,在环境监测中用瓦斯传感器来监测瓦斯浓度的变化,用温度传感器来监测人体温度的变化。

1瓦斯浓度的采集模块

在日常的工作中对环境参数进行采集,在煤矿中经典的被测参数瓦斯的测量选择合适的传感器MJC4/3.0L,它是载体催化元件,MJC4/3.0L采集的信息经过桥路后输出的信号是模拟量,并且一般信号是毫伏级的电压信号,因此必须经过放大电路放大后再进行A/D转换。

在放大电路,采用仪表放大器INA118,使用方便,仅需一个外接电阻便能使增益达到10000。

如图3是瓦斯传感器的硬件接口示意图。

图4温度传感器接口示意图

人体体温测试电路在设计人体的体温时一方面为了员工携带方便,另一方面为了便于测量和增强可靠性。

在本文的设计中是想通过矿工的安全帽里的带子来测试人体额头三点的温度值来作为人体的体温,具体的电路如图4所示。

3.3无线传感器网络的硬件电路设计

CC2420的电路原理图如图5所示,在实际的电路使用中射频芯片CC2420的原理图,从图上我们可以看出只需要天线、16MHz晶振等非常少的外围电路就能在2.4GHz频段工作。

CC2420的SPI接口由CSn、SI、SO和SCLK引脚组成。

处理器通过SPI接口访问CC2420内部寄存器和存储器。

在访问过程中,CC2420是SPI接口的从设备,接收来自处理器的时钟信号和片选信号,并在处理器的控制下执行输入/输出操作。

SPI接口接收或者发送数据时,都与时钟下降沿对齐。

CC2420与MSP430是通过SPI连接的,其中MSP430处于主模式,CC2420处于从模式。

MSP430还有4个I/O与CC2420相连,主要起查询CC2420状态的作用。

3.3.1CC2420与MSP430的硬件接口电路设计

图5CC2420的电路原理图

图6为CC2420和MSP430FG461x的I/O口连接示意图。

CC2420的数据输入引脚SI应与处理器的输出引脚SIMO相连;

CC2420的数据输出引脚SO应与处理器的输入引脚SOMI相连,由处理器的UCLK引脚提供时钟频率,与CC2420的时钟引脚SCLK相连;

处理器的控制引脚STE与CC2420片选引脚CSn相连,控制数据收发的同步性,在接收和发送时,都要保证CSn为低电平。

SPI接口的使用步骤如下:

使片选信号有效,即使CSn变低,告知CC2420新的SPI通信周期开始了;

驱动SCLK时钟信号。

SCLK不需要用固定频率驱动且可以有一个可变的服务周期。

在SCLK信号上升沿,CC2420对SI、SO上的数据进行取样。

在SCLK信号下降沿,如果SO的操作模式是输出,CC2420将改变SO上的数据;

当此通信周期完成时,停止SCLK的驱动,使片选信号无效。

图6CC2420和MSP430FG4618I/O口连接示意图

12312VSwith5V0.1uFC110uF3GDNLM7805VoutC2VinC310uF1Dvcc1C40.1uFLM11171C50.1uF10uFC6GDNVinVoutC7233VC810uF0.1uF电电电电电电图7电源供电电路vcc3.3VR7330LED2P3.59013SPI报报电电R83.3K图8报警电路3.3.2电源模块的设计由于每个矿工均随身携带为探照灯供电的蓄电池,因此在系统中人体信号节点的电源由矿工自己带的蓄电池来供电[6]。

蓄电池的输出一般为12V,单片机和温度传感器的所需要的分别为1.8-3.3V和5V,控制电路的接入电压为12V,为了得到5V,3.3V电压需要采用电源稳压芯片来实现,先是由LM7805实现把12V电压转变到5V电压,再由LM1117DT-3.3实现把5V电压转变到3.3V电压,具体电路连接如图7所示。

3.3.3声光报警模块的电路设计声光报警模块的电路设计电路根据系统的实际需要,这里采用闪光报警和语音报警的结合体声光报警。

声光报警可发出特定的鸣音同时伴随着发光二极管发光,作用于人的听觉器官和视觉器官,更易于引起和加强警觉,对于某些紧急状态如参数越限,可以通过主控中心发送数据来报警,以便使矿工们及时采取措施。

图8为报警电路。

4基于ZigBee协议的软件设计在基于ZigBee协议的软件设计这一部分有以下两部分组成:

温度采集模块的软件设计和矿井下ZigBee协议的通信技术的软件设计。

具体设计如下:

4.1温度采集模块的软件设计图9是人体的体温采集的软件子程序流程图,在该体温采集的装置中,通过采集人体头部三点的温度来确定人体的体温,硬件设计采用三个DS18B20数字温度计串联在一起采集人体头部的三点温度的方案。

DS18B20工作过程为:

主机发出一开始初始化DS18B20发搜索ROM命令读在线DS18B20序列号初始化DS18B20存在未读DS18B20N初始化DS18B20发匹配ROM命令发第一个DS18B20ROM编程读存储器,将温度存入缓冲区发跳过ROM命令发温度转换命令I=I+1等待1SN在线所有DS18B20访问完毕YI=1温度数据处理结束图9多点温度采集流程图个脉冲,待“0”电平大于480µ

s后,复位DS18B20,在DS18B20所发出响应脉冲由主机接收后,主机再发出ROM命令代码33H,然后发出一个脉冲大于15µ

s,并接着读取DS18B20序列号的一位。

当主机需要对众多在线DS18B20中的某一个进行操作时,首先发出匹配ROM命令(命令代号55H),紧接着主机提供64位序列号(包括该DS18B20的48位序列号),之后的操作就是针对该DS18B20的。

但是DS18B20的命令中允许对所有

在线节点进行统一操作,利用的是跳过ROM命令(命令代号CCH)。

4.2基于ZigBee协议的人体节点软件设计协议的人体节点软件设计人体携带的无线传感器节点是一种终端模块,主要是进行数据的采集与发送的过程,图10说明了基于Zigbee协议的人体体温采集的流程。

图10子节点数据发送流程图为了充分利用MSP430FG4618低功耗性能,令CPU工作中在突发状态下,在本设计中使用软件将CPU设定到低功耗模式3,用按键触发中断来将CPU从休眠状态中唤醒,进行数据的采集与发送,当数据采集发送完成后,CPU又进入休眠状态。

在程序设计中除了人体的温度采集程序,环境参数采集程序,无线发送子程序外,还有可运行ZigBee协议栈的OSAL的操作系统层程序。

5结束语经过半年多的刻苦努力,按照预定的要求完成了研究任务。

本篇论文着重介绍了开发的MSP430+CC2420无线传感器网络的在煤矿安全监测系统的应用,主要工作如下:

通过对有线和无线中各种通信协议的比较,最终选择了电力线载波技术和ZigBee无线通信技术相结合的煤矿安全监测系统井下通信方案。

由于本人能力和时间有限,本方案在设计和实现过程中仍然存在很多不尽完善的地方,还有很大的提高空间。

本次设计是在理想的情况下进行的,并没有拿到煤矿下进行实际的实验,在实际的应用过程中,会碰到许多意想不到的困难,需要我们去进一步的研究,始终本着把系统的安全放在第一位的原则开展研究,在今后的研究和使用过程中,要

不断地利用最新的科研成果对系统进行改造,不断提高系统的性能。

致谢本文是在导师指导下完成的,在半年多的工作与学习中,老师的处事作风和治学态度给我留下了深刻的印象。

在此对老师表示衷心的感谢,感谢他们对我在工作、学习、生活方面的关心爱护,感谢她为我提供了这样优良的环境和平台。

借此机会我还要感谢和我一起工作和学习的同学们,和他们一起度过的日子是充实而快乐的。

另外我还要感谢在论文撰写过程中所有为我的论文提出意见和建议的各位老师和同学们,因为有他们,使我能够更加顺利的走完自己的学生生涯。

参考文献[1]童敏明,谢金成,戴新联.煤矿监测系统无线传感器网络的设计[J].煤矿安全,2007:

5-8.[2]贾宗璞,杨波,贾祥芝.一种新型煤矿安全生产监控系统的设计研究[J].工矿自动化,2007:

10-12.[3]我国煤矿监测监控系统现状与发展趋势./paper/200805/2008050513083900001.htm.[4]黄瀛.基于无线传感器的煤矿安全无线与综合监控系统的研究[D].北京交通大学,2007:

2-15.[5]孙利民,李建中,陈渝.无线传感网络[M].北京:

清华大学出版社,2005:

11-23.[6]胡呈欣.一种适用于流量突发的无线传感器网络的MAC协议[D].武汉:

武汉理工大学,2008:

11-13.[7]李文仲等.ZigBee无线网络技术入门与实战[M].北京:

北京航空航天大学出版社.2007:

3-30.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2