机械设计基础课程设计一级减速器设计说明书.docx

上传人:b****3 文档编号:4132126 上传时间:2023-05-06 格式:DOCX 页数:26 大小:152.11KB
下载 相关 举报
机械设计基础课程设计一级减速器设计说明书.docx_第1页
第1页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第2页
第2页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第3页
第3页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第4页
第4页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第5页
第5页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第6页
第6页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第7页
第7页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第8页
第8页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第9页
第9页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第10页
第10页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第11页
第11页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第12页
第12页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第13页
第13页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第14页
第14页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第15页
第15页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第16页
第16页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第17页
第17页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第18页
第18页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第19页
第19页 / 共26页
机械设计基础课程设计一级减速器设计说明书.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

机械设计基础课程设计一级减速器设计说明书.docx

《机械设计基础课程设计一级减速器设计说明书.docx》由会员分享,可在线阅读,更多相关《机械设计基础课程设计一级减速器设计说明书.docx(26页珍藏版)》请在冰点文库上搜索。

机械设计基础课程设计一级减速器设计说明书.docx

机械设计基础课程设计一级减速器设计说明书

机械设计基础课

程设计说明书

 

设计题目:

机械设计基础课程设计

学院:

专业:

学号:

学生姓名:

指导教师:

完成日期:

 

机械设计课程计算内容

一、传动方案拟定…………….……………………………3

二、电动机的选择…………………………………………4

三、确定传动装置总传动比及分配各级的传动比…….…5

四、传动装置的运动和动力设计…………………………5

五、普通V带的设计………………………………………6

六、齿轮传动的设计………………………………………7

七、轴的设计………………………….…………………..9

八、滚动轴承的选择………..…………………….………13

九、键连接的选择与校核…………………………………14

十、轴连接器选择…………………………………………15

十一、减速器箱体和附件的选择…………………………15

十二、润滑与密封……………………………………………16

十三、设计小结……………………………………………16

十四、参考书目……………………………………………17

 

设计课题:

机械设计基础课程设计

设计一个带式输送机传动装置,已知带式输送机驱动卷筒的驱动功率,输送机在常温下连续单向工作,载荷平稳,环境有轻度粉尘,结构无特殊限制,工作现场有三相交流电源。

原始数据:

传送带卷筒转速nw(r/min)=78r/min

减速器输出功率pw(kw)=3.2kw

使用年限Y(年)=6年

设计任务要求:

1,主要部件的总装配图纸一张

2,A1,典型零件的总做图纸2张

3,设计说明书一份(20页左右)。

计算过程及计算说明:

一,传动方案拟定。

设计单级圆柱齿轮减速器和一级带传动。

1,使用年限6年,工作为双班工作制,载荷平稳,环境有轻度粉尘。

2、原始数据:

传送带卷筒转速nw(r/min)=78r/min

减速器输出功率pw(kw)=3.2kw

使用年限Y(年)=6年

方案拟定:

1

采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。

 

1.电动机2.V带传动3.圆柱齿轮减速器

4.连轴器5.滚筒

二、运动参数和动力参数计算

(1)电动机的选择

1、电动机类型和结构的选择:

选择Y系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。

2.、电动机容量选择:

电动机所需工作功率为:

(1):

Pd=PW/ηa ()

由电动机至运输带的传动总效率为:

η总=η1×η22×η3

式中:

η1、η2、η3、η4分别为带传动、轴承、齿轮传动。

η1=0.96η2=0.99η3=0.987η

η总=0.91

所以:

电机所需的工作功率:

Pd=PW/ηa=3.2/0.91=3.52kw

3.额定功率ped=5.5.查表二十章20-1

4.根据手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’=3~6。

取V带传动比I1’=2~4。

则总传动比理论范围为:

Ia’=6~24。

则电动机转速可选为:

N’d=I’a×n卷筒=78*(2-4)*(3-6)=468-1872r/min

则符合这一范围的同步转速有:

1000、1500

(2)分配传动比I总=1420/52=11.1

方案

电动机型号

额定功率

电动机转速同步

电动机转速满载

电动机质量

总传动比

V带传动比

单机减速器

1

Y160M2-8

3

1420

1420

119

11.1

3

3.7

综合考虑电动机和传动装置的尺寸、重量、价格

和带传动、减速器传动比,可见此方案比较适合。

此选定电动机型号为Y132M1-6,其主要性能:

电动机主要外形和安装尺寸:

电动机轴伸出端直径38K6。

电动机轴伸出端安装长度80

电动机中心高度132

电动机外形尺寸长*宽*高=515*345*3155

启动转矩:

2

三、确定传动装置的总传动比和分配级传动比:

由选定的电动机满载转速nm和工作机主动轴转速n

1、可得传动装置总传动比为:

I总=nm/n=nm/n

=960/78=12.30

总传动比等于各传动比的乘积

分配传动装置传动比

i总=i1×i2(式中i1、i2分别为带传动

和减速器的传动比)

2、分配各级传动装置传动比:

根据指导书P7表1,取i1=3.5(普通V带i1=2~4)

因为:

   i总=i1×i2

所以:

   i2=I总/i1

=12..3/3.5

=4.39

四、传动装置的运动和动力设计:

将传动装置各轴由高速至低速依次定为Ⅰ轴,Ⅱ轴,......以及

i0,i1,......为相邻两轴间的传动比

η01,η12,......为相邻两轴的传动效率

PⅠ,PⅡ,......为各轴的输入功率(KW)

TⅠ,TⅡ,......为各轴的输入转矩(N·m)

nⅠ,nⅡ,......为各轴的输入转矩(r/min)

可按电动机轴至工作运动传递路线推算,得到各轴的运动和动力参数

1、运动参数及动力参数的计算

(1)计算各轴的转数:

0轴:

n0=nm=960(r/min)

Ⅰ轴:

nⅠ=nm/i1

=960/3.5=274(r/min)

  Ⅱ轴:

nⅡ=nⅠ/i2

=274/4.39=62.4r/min

(2)计算各轴的功率:

0轴:

P0=Ped=4(KW)

Ⅰ轴:

PⅠ=Pd×η01=Pd×η1

=4*0.6=3.84(KW)

Ⅱ轴:

PⅡ=PⅠ×η12=PⅠ×η2×η3

=53.84*0.99*0.97=3.64(KW)

(3)计算各轴的输入转矩:

电动机轴输出转矩为:

0轴:

T0=9550·Pd/nm=9550×4/960=39.79N·m

Ⅰ轴:

TⅠ=9550*p1/n1

=9550*3.84/343=106.91N·m

Ⅱ轴:

TⅡ=9550*p2/n2

=9550*3.64/=557N·m

计算各轴的输出功率:

由于Ⅰ~Ⅱ轴的输出功率分别为输入功率乘以轴承效率:

故:

P’Ⅰ=PⅠ×η轴承=2.33*0.95=2.20KW

P’Ⅱ=PⅡ×η轴承=2.20*0.98*0.98=2.10KW

 

项目

电机轴

高速轴

低速轴

转速

960

274

62.4

功率

4

3.84

3.64

转矩

39.79

106.91

557

传动比

12.3

3.5

效率

0.96

0.96

五.V带的设计

1.带传动

(1)选择普通V带型号

查表得KA=1.2,ped=4,n0=960(r/min),n2=476.7(r/min)

故PC=KA·P=1.2×3.2=3.84KW)

(2)选普通V带型号。

.由图得,位于坐标点B型内,计算.

(3),求大,小带轮基准直径d1,d2,

由表得,d1应不小于75,现取d1=100mm,由公式得,

D2=n1/n2*d1(1-ε)=960/274*100*(1-0.02)=343mm

由表13-9,取d2=355m,

(4),带速验算:

V=n1·d1·π/(1000×60)=3.14*100*960/60*1000=5.24m/s

介于5~25m/s范围内,故合适

确定带长和中心距a.

(5),求V带基准长度Ld和中心距a

初步选取中心距a0=1.5·(d1+d2)=1.5*(100+355)=628.5mm

取a0=700.

符合0.7·(d1+d2)≤a0≤2·(d1+d2)

3-2得带长。

L0=2·a0+π·(d1+d2)+(d2-d1)2/(4·a0)

==2137mm

由表13-2选用Ld=2240

实际中心距a=a0+(Ld-L0)/2=540+(2240-2137)/2=1171mm

(6),验算小带轮上的包角α1

α1=180-(d2-d1)×57.3/a

=180-(355-100)×57.3/1171=168.60>1200合适

(7)确定带的根数z

Z=PC/((P0+△P0)·KL·Kα)

=3.84/((0.95+0.11)×0.97×1.06)=3.58

故要取4根B型V带

(8),计算轴上的压力

由书13-1的初拉力公式有

F0=500·PC·(2.5/Kα-1)/z·c+q·v2

=500×3.84×(2.5/0.97-1)/(4×5.024)+0.1×5.0242=253.9N

由课本作用在轴上的压力

FQ=2·z·F0·sin(α/2)

=2×4×252.9×sin(168/2)=2012N

 

 

六、齿轮传动的设计:

(1)、选定齿轮传动类型、材料、热处理方式、精度等级。

小齿轮选软齿面,大齿轮选软齿面,中等冲击。

小齿轮的材料为45钢调质,齿面硬度为197—286HBS,σHlim=580Mpa,

σFE=950Mpa

大齿轮的材料为45钢正火,齿面硬度为156--217HBS,σHlim=380Mpa,

σFE=310Mpa

轮精度初选8级

由表11-5,取SH=1.1SF=1.25

[σH1]=σHlim2/H=580/1.1=527Mpa

[σH2]=σHlim1/SH=380/1.1=345Mpa

[σF1]=σFE/SF=450/1.25=360Mpa

[σF2]=σFE/SF=310/1.25=248Mpa

(2)、初选主要参数

Z1=32,u=3.7

Z2=Z1·u=32×3.7=96

齿宽系数为0.7

(3)按齿面接触疲劳强度设计

计算小齿轮分度圆直径

d1≥

确定各参数值

载荷系数查课本表6-6取K=1.5

小齿轮名义转矩

T1=9.55×106×P/n1=9.55×106×3.84/274

=1.34×105N·mm

材料弹性影响系数[]

由课本表6-7ZE=188

区域系数ZH=2.5

d1≥

=118.4mm

(4)确定模数

m=d1/Z1≥118.4/32=3.7mm

取标准模数值m=3

小轮分度圆直径d1=m·Z=3×32=96mm

齿轮啮合宽度b=Ψd·d1=0.8×118.4=94.72mm

d1=m·Z=96mm

d2=m·Z1=3×96=288mm

a=(d1+d2)/2=192

b1=100mmb2=95mm

取小齿轮宽度b1=100mm

验算齿轮弯曲强度

复合齿轮系数YFA1=2.56YFA2=1.63

YSA2=2.13YSA2=1.81

由式得

[σF]1=2KT1YFA1YSA2/bmZ1=61.3<[σF1]=360Mpa

[σF]2=YFA2YSA2/YFA1YSA2=56.6<[σF2]=248Mpa

(7)验算初选精度等级是否合适

齿轮圆周速度v=π·d1·n1/(60×1000)

=3.14×96×274/(60×1000)

=1.37m/s<6

对照表6-5可知选择8级精度合适。

 

小齿轮

大齿轮

M

3

3

A

192

192

Z

32

96

D

90

407

Da

103

147.5

Df

104.37

401.37

B

75

70

七轴的设计

1,齿轮轴的设计

1,5—滚动轴承2—轴3—齿轮轴的轮齿段4—套筒

6—密封盖7—轴端挡圈8—轴承端盖9—带轮10—键

(1)按扭转强度估算轴的直径

选用45#调质,硬度197~286HBS

轴的输入功率为PⅠ=3.84KW

转速为nⅠ=274r/min

根据课本P205(13-2)式,并查表13-2,取c=107

d≥

(2)确定轴各段直径和长度

从大带轮开始右起第一段,由于带轮与轴通过键联接,则轴应该增加5,取D1=Φ30mm,又带轮的宽度B=(Z-1)·e+2·f

=(3-1)×20+2×8=60mm

则第一段长度L1=65mm

右起第二段直径取D2=Φ38mm

根据轴承端盖的装拆以及对轴承添加润滑脂的要求和箱体的厚度,取端盖的外端面与带轮的左端面间的距离为30mm,则取第二段的长度L2=80mm

右起第三段,该段装有滚动轴承,选用深沟球轴承,则轴承有径向力,而轴向力为零,选用6316型轴承,其尺寸为d×D×B=40×80×18,那么该段的直径为D3=Φ40mm,长度为L3=25mm

右起第四段,为滚动轴承的定位轴肩,其直径

应小于滚动轴承的内圈外径,取D4=Φ48mm,长度取L4=15mm

右起第五段,该段为齿轮轴段,由于齿轮的齿顶圆直径为Φ115.5mm,分度圆直径为Φ110mm,齿轮的宽度为110mm,则,此段的直径为D5=Φ110mm,长度为L5=100mm

右起第六段,为滚动轴承的定位轴肩,其直径应小于滚动轴承的内圈外径,取D6=Φ48mm

长度取L6=15mm

右起第七段,该段为滚动轴承安装出处,取轴径为D7=Φ40mm,长度L7=20mm

(3)求齿轮上作用力的大小、方向

小齿轮分度圆直径:

d1=104.4mm

作用在齿轮上的转矩为:

T1=1.88.85*105N·mm

求圆周力:

Ft

Ft=2T2/d2=2×1.8885×105/60=6295

求径向力Fr

Fr=Ft·tanα=6295×tan200=2291.2N

Ft,Fr的方向如下图所示

(4)轴长支反力

根据轴承支反力的作用点以及轴承和齿轮在轴上的安装位置,建立力学模型。

水平面的支反力:

RA=RB=Ft/2=3147.5N

垂直面的支反力:

由于选用深沟球轴承则Fa=0

那么RA’=RB’=Fr×70/124=1150.6N

(5)画弯矩图

右起第四段剖面C处的弯矩:

水平面的弯矩:

MC=PA×70=64Nm

垂直面的弯矩:

MC1’=MC2’=RA’×70=25Nm

合成弯矩:

(6)画转矩图:

T=Ft×d1/2=65.0Nm

(7)画当量弯矩图

因为是单向回转,转矩为脉动循环,α=0.8

可得右起第四段剖面C处的当量弯矩:

(8)判断危险截面并验算强度

右起第四段剖面C处当量弯矩最大,而其直径与相邻段相差不大,所以剖面C为危险截面。

已知MeC2=62.04Nm,由课本表13-1有:

[σ-1]=60Mpa则:

σe=MeC2/W=MeC2/(0.1·D43)

=73.14×1000/(0.1×443)=12Nm<[σ-1]

右起第一段D处虽仅受转矩但其直径较小,故

该面也为危险截面:

σe=MD/W=MD/(0.1·D13)

=35.4×1000/(0.1×303)=15.84Nm<[σ-1]

所以确定的尺寸是安全的。

输出轴的设计计算

(1)确定轴上零件的定位和固定方式(如图)

1,5—滚动轴承2—轴3—齿轮4—套筒6—密封盖

7—键8—轴承端盖9—轴端挡圈10—半联轴器

(2)按扭转强度估算轴的直径

选用35#调质,硬度241~286HBS

轴的输入功率为PⅡ=2.21KW

转速为nⅡ=476.7r/min

根据课本P205(13-2)式,并查表13-2,取c=115

d≥

(3)确定轴各段直径和长度

从联轴器开始右起第一段,由于联轴器与轴通过键联接,则轴应该增加5%,取Φ45mm,根据计算转矩TC=KA×TⅡ=1.3×806.98=1049.1Nm,查标准GB/T5014—2003,选用LXZ2型弹性柱销联轴器,半联轴器长度为l1=84mm,轴段长L1=82mm

右起第二段,考虑联轴器的轴向定位要求,该段的直径取Φ52mm,根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器左端面的距离为30mm,故取该段长为L2=74mm

右起第三段,该段装有滚动轴承,选用深沟球轴承,则轴承有径向力,而轴向力为零,选用6211型轴承,其尺寸为d×D×B=55×100×21,那么该段的直径为Φ55mm,长度为L3=36

右起第四段,该段装有齿轮,并且齿轮与轴用键联接,直径要增加5%,大齿轮的分度圆直径为270mm,则第四段的直径取Φ60mm,齿轮宽为b=60mm,为了保证定位的可靠性,取轴段长度为L4=58mm

右起第五段,考虑齿轮的轴向定位,定位轴肩,取轴肩的直径为D5=Φ66mm,长度取L5=10mm

右起第六段,该段为滚动轴承安装出处,取轴径为D6=Φ55mm,长度L6=21mm

(4)求齿轮上作用力的大小、方向

大齿轮分度圆直径:

d1=270mm

作用在齿轮上的转矩为:

T1=2.1.×105N·mm

求圆周力:

Ft

Ft=2T2/d2=2×5.07×105/468=2166.7N

求径向力FrFr=Ft·tanα=2166.7×tan200=788.6N

(5)轴长支反力

根据轴承支反力的作用点以及轴承和齿轮在轴上的安装位置,建立力学模型。

水平面的支反力:

RA=RB=Ft/2=1075.44N

垂直面的支反力:

由于选用深沟球轴承则Fa=0

那么RA’=RB’=Fr×62/124=394.3N

(6)画弯矩图

右起第四段剖面C处的弯矩:

水平面的弯矩:

MC=RA×62=120.65Nm

垂直面的弯矩:

MC1’=MC2’=RA’×62=41.09Nm

合成弯矩:

(7)画转矩图:

T=Ft×d2/2=508.0Nm

(8)画当量弯矩图

因为是单向回转,转矩为脉动循环,α=0.8

可得右起第四段剖面C处的当量弯矩:

(9)判断危险截面并验算强度

右起第四段剖面C处当量弯矩最大,而其直径与相邻段相差不大,所以剖面C为危险截面。

已知MeC2=310.21Nm,由课本表13-1有:

[σ-1]=60Mpa则:

σe=MeC2/W=MeC2/(0.1·D43)

=307.56×1000/(0.1×603)=14.15Nm<[σ-1]

右起第一段D处虽仅受转矩但其直径较小,故该面也为危险截面:

σe=MD/W=MD/(0.1·D13)

=304.8×1000/(0.1×453)=33.45Nm<[σ-1]

所以确定的尺寸是安全的。

 

八,滚动轴承的选择和计算

根据条件,轴承预计寿命

Lh7×365×8=20440小时

1.输入轴的轴承设计计算

(1)初步计算当量动载荷P

因该轴承在此工作条件下只受到Fr径向力作用,所以P=Fr760N

(2)求轴承应有的径向基本额定载荷值

(3)选择轴承型号

查课本表11-5,选择6316轴承Cr=29.5KN

由课本式11-3有

∴预期寿命足够

∴此轴承合格

2.输出轴的轴承设计计算

(1)初步计算当量动载荷P

因该轴承在此工作条件下只受到Fr径向力作用,所以

P=Fr=1369.61N

(2)求轴承应有的径向基本额定载荷值

(3)选择轴承型号

查课本表11-5,选择6317轴承Cr=43.2KN

由课本式11-3有

∴预期寿命足够

∴此轴承合格

九,键联接的选择及校核计算

1.输入轴与大带轮联接采用平键联接

此段轴径d1=95mm,L1=70mm

查手册得,选用C型平键,得:

A键22*14GB1096-79L=L1-b=70-20=50mm

T=44.77N·mh=16mm

根据课本P243(10-5)式得

σp=4·T/(d·h·L)

=4×44.77×1000/(96×14×50)

=2.95Mpa<[σR](110Mpa)

2、输入轴与齿轮1联接采用平键联接

轴径d2=44mmL2=63mmTⅠ=120.33N·m

查手册选A型平键GB1096-79

B键12×8GB1096-79

l=L2-b=62-12=50mmh=8mm

σp=4·TⅠ/(d·h·l)

=4×120.33×1000/(44×8×50)

=27.34Mpa<[σp](110Mpa)

3、输出轴与齿轮2联接用平键联接

轴径d3=60mmL3=58mmTⅡ=518.34Nm

查手册P51选用A型平键

键20×12GB1096-79

l=L3-b=60-20=40mmh=10mm

σp=4·TⅡ/(d·h·l)

=4×518.34×1000/(60×12×40)

=72Mpa<[σp](110Mpa)

十,联轴器的选择

(1)类型选择

由于两轴相对位移很小,运转平稳,且结构简单,对缓冲要求不高,故选用弹性柱销联。

(2)载荷计算

计算转矩TC=KA×TⅡ=1.4×518.34=725.6Nm,

其中KA为工况系数,由课本表14-1得KA=1.4

(3)型号选择

根据TC,轴径d,轴的转速n,查标准GB/T5014—2003,选用LXZ2型弹性柱销联,其额定转矩[T]=1250Nm,许用转速[n]=3750r/m,故符合要求。

十一,减速器箱体和附件的选择

(1)窥视孔和窥视孔盖在减速器上部可以看到传动零件啮合处要开窥视孔,以便检查齿面接触斑点和赤侧间隙,了解啮合情况。

润滑油也由此注入机体内。

窥视孔上有盖板,以防止污物进入机体内和润滑油飞溅出来。

(2)注油前用螺塞赌注。

(3)油标油标用来检查油面高度,以保证有正常的油量。

油标有各种结构类型,有的已定为国家标准件。

(4)通气器减速器运转时,由于摩擦发热,使机体内温度升高,气压增大,导致润滑油从缝隙向外渗漏。

所以多在机盖顶部或窥视孔盖上安装通气器,使机体内热涨气自由逸出,达到集体内外气压相等,提高机体有缝隙处的密封性能。

(5)启盖螺钉机盖与机座结合面上常涂有水玻璃或密封胶,联结后结合较紧,不易分开。

为便于取盖,在机盖凸缘上常装有一至二个启盖螺钉,在启盖时,可先拧动此螺钉顶起机盖。

在轴承端盖上也可以安装启盖螺钉,便于拆卸端盖。

对于需作轴向调整的套环,如装上二个启盖螺钉,将便于调整。

(6)定位销为了保证轴承座孔的安装精度,在机盖和机座用螺栓联结后,镗孔之前装上两个定位销,孔位置尽量远些。

如机体结构是对的,销孔位置不应该对称布置。

(7)调整垫片调整垫片由多片很薄的软金属制成,用一调整轴承间隙。

有的垫片还要起调整传动零件轴向位置的作用。

(8)环首螺钉、吊环和吊钩在机盖上装有环首螺钉或铸出吊环或吊钩,用以搬运或拆卸机盖。

(9)密封装置在伸出轴与端盖之间有间隙,必须安装密封件,以防止漏油和污物进入机体内。

密封件多为标准件,其密封效果相差很大,应根据具体情

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2