自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx

上传人:b****2 文档编号:4171385 上传时间:2023-05-02 格式:DOCX 页数:12 大小:1.50MB
下载 相关 举报
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第1页
第1页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第2页
第2页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第3页
第3页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第4页
第4页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第5页
第5页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第6页
第6页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第7页
第7页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第8页
第8页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第9页
第9页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第10页
第10页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第11页
第11页 / 共12页
自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx

《自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx(12页珍藏版)》请在冰点文库上搜索。

自动控制原理实验二系统的动态性能与稳态研究Word文档下载推荐.docx

2.a=0.13

3.

此时,R=13K。

此时,系统的自然无阻尼震荡频率con=31.62,阻尼比Z0.205,系统为一欠阻

(y=51.79%,峰值时间为101.510ms,调节时间为

尼的二阶系统,输出曲线为一震荡后趋于平稳的图像。

理论上系统的输出曲线的超调量

462.812ms。

实验时系统的输出曲线的超调量

0=53.30%,峰值时间为101.667ms,调节时间为

此时,R=33K。

此时,系统的自然无阻尼震荡频率con=31.62,阻尼比Z0.521,系统为一欠阻

(7=14.69%

,峰值时间为

116.400ms

,调节时间为

182.105ms。

0=15.74%

115.000ms

170.833ms。

4.a=0.44

此时,R=44K。

系统的闭环传递环数G(s)=,响应函数曲线如图所示。

此时,系统的自然无阻尼震荡频率con=31.62,阻尼比Z0.695,系统为一欠阻

理论上系统的输出曲线的超调量产4.79%,峰值时间为138.183ms,调节时间为

136.513ms。

实验时系统的输出曲线的超调量(y=5.58%,峰值时间为133.333ms,调节时间为

160.833ms。

5.a=0.63

此时,R=63K。

此时,系统的自然无阻尼震荡频率on=31.62,阻尼比Z0.996,系统为一近似

于临界阻尼的二阶系统,输出曲线为一快速上升后速度变缓,最终趋于平稳的图像。

理论上系统的输出曲线的超调量o=0%,峰值时间为1111.931ms,调节时间为

95.258ms。

实验时系统的输出曲线的超调量(7=0%,峰值时间为362.500ms,调节时间为

362.500ms。

6.实验1结论分析:

在实验中a由0变化到0.63的过程中,我们选取的二阶系统经历了由欠阻尼到过阻尼的状态变化。

整个实验中,通过对传递函数的分析我们发现,系统的无阻尼自然振荡频率con全

程保持为31.62Hz不变,而系统的阻尼比Z由0变化到0.996,可见系统的状态逐渐由无阻尼过渡到欠阻尼再到接近于临界阻尼。

在这一过程中,通过图像我们可以看到,响应的图像

由一等幅振荡的曲线逐渐变化为一为一快速上升后速度变缓,最终趋于平稳的曲线。

同时峰

值时间tp逐渐变长,调整时间ts逐渐减小。

这一现象符合理论分析结果。

实验2:

分析系统的结构与参数对系统的稳态误差的影响

1.0型系统

经计算,该系统的开环传递函数为G(s)=

1.1.输入阶跃信号(幅值为2V)

理论上ess0=,

1.1.1.R=100K

此时的稳态误差ess0理论值为1V,实际测量值为1.02V

1.1.2.R=300K

此时的稳态误差ess0理论值为0.5V,实际测量值为0.53V

okawv/rii•耶武吐■细*>

i.a»

x・4*4Al>

»

m*■也・ta*

■«

■■B#i;

«

tLW・«

«

W*f-S*Ulikfll

1.1.3.R=500K

此时的稳态误差esso理论值为0.33V,实际测量值为0.37V

tiwe—Mq士Bw«

~mvr^i

gftWMIit«

-tQ-IV**CH—■■畳totri«

IMm<

4Va«

Du*

■出!

H.HK-«

»

-t«

ViaMiIwltiiHV>

k.4v

1.1.4.R=700K

此时的稳态误差ess0理论值为0.25V,实际测量值为0.28V

12输入单位斜坡信号

理论上esso=—

1.2.1.R=100K

此时的稳态误差esso理论值为无穷大,实际测量值为无穷大

□H•

—jninl:

"

■EK

Mt

||iAIJf亠拥«

ita亭

r"

Mlnd

122.R=300K

此时的稳态误差ess0理论值为无穷大,实际测量值为无穷大

13结论:

0型系统在输入阶跃信号时,系统最终处于稳态,其稳态误差随这R

的增大而减小。

当输入单位斜坡信号的时候,其稳态误差为无穷大。

在实验中测量值与理论值基本一致。

2.1型系统

G(s)=

经计算,该系统的开环传递函数为

2.1.输入阶跃信号(幅值为2V)

理论上essi=—

2.1.1.R=100K

此时的稳态误差ess1理论值为ov,实际测量值为0V

*1

mea.-w•

KI

■WfMnwi•~・|灯7|T■UPFM丄4HT•也尸

I)4■M■苦

ia■

*a如时■*■Jfi.Hk鼻*Il塾*■■皿ma也曲・■

WMF*»

*r-aws

2.1.2.R=300K

此时的稳态误差ess1理论值为0V,实际测量值为0V

也1aWMtHJ0.1^*•1.4*41I!

■实IIth*■M»

■机鮭皿■

*41«

■*A<

K?

-MW・TTy«

■■1mufpaKT->

2.1.3.R=500K

此时的稳态误差essi理论值为ov,实际测量值为0V

m陀—jfftl■■川ZMTHl

氐环ItLife-*已ItI1**II**■m■・•也dab■

541lli«

E-Hi:

-U#flX-elsu•・”y・《,帀匸丽」noMl-l.01

2.1.4.R=700K

此时的稳态误差essi理论值为0V,实际测量值为0V

Jliiiktni'

M■■rd吐kRBI^VLHm*■Am*・•*

■49-^KTA・-«

>

■[>

MV-dLMta•)«

•!

■#■「*i«

1L«

1

22输入单位斜坡信号

理论上esso=—,—

2.2.1.R=100K

此时的稳态误差essi理论值为0.1V,实际测量值为0.12V

2.2.2.R=300K

此时的稳态误差essi理论值为0.03V,实际测量值为0.03V

JEA-lfr*CMLBwe*fML>

m*NItaa•—*

尊。

五hw■号貝•*.:

iftM.Will.ia|.M-1MIMZ4iH-i.m

23结论:

1型系统在输入阶跃信号时,系统最终处于稳态,其稳态误差始终为0。

当输入单位斜坡信号的时候,其稳态误差随R的增大而减小。

在实

验中测量值与理论值基本一致。

3.实验2结论分析:

本实验中0型系统与1型系统经计算均为稳定系统,主要区别在于前者中的惯性环节,在

后者被替换为积分环节。

在输入阶跃信号时,0型系统的稳态误差为一与电阻相关的常数,

1型系统的稳态误差为无穷大。

在单位斜坡信号,0型系统的稳态误差为0,1型系统的稳

态误差为一与电阻相关的常数。

实验心得体会:

通过此次实验,我充分理解了二阶欠阻尼系统的动态性能指标的相关含义与计算方法,并对这个知识点有了更深入的认识和体会。

我也深刻领悟到了0型,1型

系统输入单位阶跃信号和单位斜坡信号的响应图像背后的数学含义和实际含义。

同时对于稳态误差的实际含义和相关的计算方法也有了更好的掌握与心得。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2