仓库温度与湿度Word格式文档下载.docx

上传人:b****1 文档编号:4245062 上传时间:2023-05-03 格式:DOCX 页数:35 大小:374.56KB
下载 相关 举报
仓库温度与湿度Word格式文档下载.docx_第1页
第1页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第2页
第2页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第3页
第3页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第4页
第4页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第5页
第5页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第6页
第6页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第7页
第7页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第8页
第8页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第9页
第9页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第10页
第10页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第11页
第11页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第12页
第12页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第13页
第13页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第14页
第14页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第15页
第15页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第16页
第16页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第17页
第17页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第18页
第18页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第19页
第19页 / 共35页
仓库温度与湿度Word格式文档下载.docx_第20页
第20页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

仓库温度与湿度Word格式文档下载.docx

《仓库温度与湿度Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《仓库温度与湿度Word格式文档下载.docx(35页珍藏版)》请在冰点文库上搜索。

仓库温度与湿度Word格式文档下载.docx

三.系统总体设计……………………………………………….

3.1.1温度传感器………………………………………………..

3.1.2湿度传感器………………………………………………..

3.1.3多路开关……………………………………………….

3.2信号分析与处理

3.2.1A/D转换…………………………………

3.2.2单片机8031………………………

3.2.2.18031的片内结构………………………

3.2.2.28031的引脚图……………………….

3.2.2.38031程序存储器……………………

3.2.2.48031数据存储器…………………………………………..

3.2.2.5特殊功能寄存器SFR………………………………….

3.2.2.6工作方式………………………………………………….

3.2.3存储器的设计…………………………………………………..

3.3.3显示与报警的设计………………………………………….

3.3显示与报警的设计…………………………………………………

3.3.1显示电路…………………………………………………………

3.3显示与报警的设计……………………………………………………

3.3.1显示电路…………………………………………………..

3.3.2报警电路…………………………………………………….

四.软件设计……………………………………………………...

五.总结…………………………………………………………..

六.参考文献…………………………………………………………….

七.致谢……………………………………………….…………………

一.绪论

1.1选题的理论、实际意义

近几年来仓库的机械化,自动化程度不断提高,一些智能化仓库的管理技术如检测技术,监视技术和控制技术等在仓库管理中得到了广泛的应用。

在粮食,药品等的储存仓库,若不对仓库内的温度与湿度进行实时监测,就不能及时了解粮食,药材的储存情况,可能发生腐烂,造成极大的经济损失。

由于仓库对环境温度和湿度提出了很高的要求,因此能否有效对这些领域的环境温度与湿度进行实时监测和控制是一个必须解决的重要课题,本设计设计的系统解决的就是温度和湿度的实时检测,只要两者之中任何一个超过限制,就启动报警系统,使人们能及时发现问题,采取有效措施,以此避免不必要的损失。

1.2研究动态、见解

单片微型计算机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,把单片机应用于温湿度控制中,采用单片机做主控单元,无触点控制,可完成对温湿度的采集和检测的要求。

所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。

温湿度控制在仓库管理过程中,是一个非常重要的环节。

控制精度直接影响着物品质量的好坏。

本设计是一种具有自动监测报警的单片机系统,传统的方法是用湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。

这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。

因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。

1.3研究思路、方法、技术路线

用单片机作测控系统,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。

对于测量系统而言,如何准确获得被测信号是其核心任务;

而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。

传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。

工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。

二.器件选定

(一)温度传感器

AD590集成电路温度传感器,它的测温范围在-55℃~+150℃之间,而且精度高。

M档在测温范围内非线形误差为±

0.3℃。

AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会损坏。

使用可靠。

它只需直流电源就能工作,而且,无需进行线性校正,所以使用也非常方便,接口也很简单。

作为电流输出型传感器的一个特点是,和电压输出型相比,它有很强的抗外界干扰能力。

AD590的测量信号可远传百余米。

(二)温度传感器

测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。

电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。

HS1100/HS1101湿度传感器。

HS1100/HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。

不需校准的完全互换性,高可靠性和长期稳定性,快速响应时间,专利设计的固态聚合物结构,由顶端接触(HS1100)和侧面接触(HS1101)两种封装产品,适用于线性电压输出和频率输出两种电路,适宜于制造流水线上的自动插件和自动装配过程等。

相对湿度在1%---100%RH范围内;

电容量由16pF变到200pF,其误差不大于±

2%RH;

响应时间小于5S;

温度系数为0.04pF/℃。

可见精度是较高的。

(三)信号采集通道的选择

采用多路分时的模拟量输入通道。

这种结构的模拟量通道特点为:

(1)对ADC、S/H要求高。

(2)处理速度慢。

(3)硬件简单,成本低。

(4)多路分时的模拟量输入通道。

更为适合于本设计系统对于模拟量输入的要求

多路分时的模拟量输入通道

(四)单片机的选择

在众多单片机成员中,MCS-51系列单片机以其优越的性能,成熟的技术及高可靠性和高性能价格比。

迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。

近年来,MCS-51系列单片机以8位机,如8031/8032,8051/8052,8751/8752尤为变得热门由

于MCS-51单片机的程序计数器为16位,因此,可寻址的地址空间为64K空间。

805和8751单片机内部有4K字节ROM/EPROM程序存储器,当管脚=1时,低4K地址(0000H-0FFFH)指向片内,而当=0时,低4K地址指向片外。

8052内部有8KROM程序存储器,外部同样可扩展到64K。

对于片内无ROM/EPROM的单片机8031/8032构成应用系统时,必须使=0,程序存储器只能外部扩展。

另外,MCS-51系列单片机内部有128个字节的数据存储器(8052/8032内部有256个字节的RAM)。

针对本系统,则只需要采用8031即可,由于EPROM的擦写比较麻烦,给开发制造了一定的困难,因此,我采用INTEL公司生产的新型单片机(8位),指令与8031完全兼容,但片内的4KE2PROM采用的是4K的FlashROM存储器,这种存储器可电擦写,速度快,且擦写次数1000余次,从而缩短了开发周期,方便开发者,因此,我的最终选择是INTEL公司的8031单片机,以其高性能价格比得到用户的信赖

三系统总体设计

本设计是基于单片机对数字信号的高敏感和可控性、温湿度传感器可以产生模拟信号,和A/D模拟数字转换芯片的性能,设计了以8031基本系统为核心的一套检测系统,其中包括A/D转换、单片机、复位电路、温度检测、湿度检测、键盘及显示、报警电路、系统软件等部分的设计。

图3-1系统总体框图

本设计由信号采集、信号分析和信号处理三个部分组成的。

(一)信号采集由AD590、HS1100及多路开关CD4051组成;

(二)信号分析由A/D转换器MC14433、单片机8031基本系统组成;

(三)信号处理由串行口LED显示器和报警系统等组成。

信号采集

3.1.1温度传感器

集成温度传感器AD590是美国模拟器件公司生产的集成两端感温电流源。

一.主要特性

AD590是电流型温度传感器,通过对电流的测量可得到所需要的温度值。

根据特性分挡,AD590的后缀以I,J,K,L,M表示。

AD590L,AD590M一般用于精密温度测量电路,其电路外形如图3-2所示,它采用金属壳3脚封装,其中1脚为电源正端V+;

2脚为电流输出端I0;

3脚为管壳,一般不用。

集成温度传感器的电路符号如图3-2所示。

3-3所示。

图3-2AD590外形(图1)及电路符号(图2)

1、流过器件的电流(μA)等于器件所处环境的热力学温度(开尔文)度数,即:

IT/T=1μA/K

式中:

IT——流过器件(AD590)的电流,单位μA。

T——热力学温度,单位K。

2、AD590的测温范围-55℃-+150℃。

3、AD590的电源电压范围为4V-30V。

电源电压可在4V-6V范围变化,电流IT变化1μA,相当于温度变化1K。

4、输出电阻为710MΩ。

5、精度高。

AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线形误差±

2AD590的工作原理

  在被测温度一定时,AD590相当于一个恒流源,把它和5~30V的直流电源相连,并在输出端串接一个1kΩ的恒值电阻,那么,此电阻上流过的电流将和被测温度成正比,此时电阻两端将会有1mV/K的电压信号。

其基本电路如图

图3-3AD590内部核心电路

  图3-3是利用ΔUBE特性的集成PN结传感器的感温部分核心电路。

其中T1、T2起恒流作用,可用于使左右两支路的集电极电流I1和I2相等;

T3、T4是感温用的晶体管,两个管的材质和工艺完全相同,但T3实质上是由n个晶体管并联而成,因而其结面积是T4的n倍。

T3和T4的发射结电压UBE3和UBE4经反极性串联后加在电阻R上,所以R上端电压为ΔUBE。

因此,电流I1为:

 

I1=ΔUBE/R=(KT/q)(lnn)/R

  对于AD590,n=8,这样,电路的总电流将与热力学温度T成正比,将此电流引至负载电阻RL上便可得到与T成正比的输出电压。

由于利用了恒流特性,所以输出信号不受电源电压和导线电阻的影响。

图3中的电阻R是在硅板上形成的薄膜电阻,该电阻已用激光修正了其电阻值,因而在基准温度下可得到1μA/K的I值。

图3-4AD590内部电路

  图3-4所示是AD590的内部电路,图中的T1~T4相当于图3-3中的T1、T2,而T9,T11相当于图3-3中的T3、T4。

R5、R6是薄膜工艺制成的低温度系数电阻,供出厂前调整之用。

T7、T8,T10为对称的Wilson电路,用来提高阻抗。

T5、T12和T10为启动电路,其中T5为恒定偏置二极管。

  T6可用来防止电源反接时损坏电路,同时也可使左右两支路对称。

R1,R2为发射极反馈电阻,可用于进一步提高阻抗。

T1~T4是为热效应而设计的连接防式。

而C1和R4则可用来防止寄生振荡。

该电路的设计使得T9,T10,T11三者的发射极电流相等,并同为整个电路总电流I的1/3。

T9和T11的发射结面积比为8:

1,T10和T11的发射结面积相等。

  T9和T11的发射结电压互相反极性串联后加在电阻R5和R6上,因此可以写出:

ΔUBE=(R6-2R5)I/3

  R6上只有T9的发射极电流,而R5上除了来自T10的发射极电流外,还有来自T11的发射极电流,所以R5上的压降是R5的2/3。

  根据上式不难看出,要想改变ΔUBE,可以在调整R5后再调整R6,而增大R5的效果和减小R6是一样的,其结果都会使ΔUBE减小,不过,改变R5对ΔUBE的影响更为显著,因为它前面的系数较大。

实际上就是利用激光修正R5以进行粗调,修正R6以实现细调,最终使其在250℃之下使总电流I达到1μA/K。

二.基本应用电路

图3-8是AD590用于测量热力学温度的基本应用电路。

因为流过AD590的电流与热力学温度成正比,当电阻R1和电位器R2的电阻之和为1kΩ时,输出电压V0随温度的变化为1mV/K。

但由于AD590的增益有偏差,电阻也有偏差,因此应对电路进行调整,调整的方法为:

把AD590放于冰水混合物中,调整电位器R2,使V0=273.2+25=298.2(mV)。

但这样调整只保证在0℃或25℃附近有较高的精度。

图3-5 AD590应用电路

三.摄氏温度测量电路

如图3-5所示,电位器R2用于调整零点,R4用于调整运放LF355的增益。

调整方法如下:

在0℃时调整R2,使输出V0=0,然后在100℃时调整R4使V0=100mV。

如此反复调整多次,直至0℃时,V0=0mV,100℃时V0=100mV为止。

最后在室温下进行校验。

例如,若室温为25℃,那么V0应为25mV。

冰水混合物是0℃环境,沸水为100℃环境。

四.多路检测信号的实现

本设计系统为八路的温度信号采集,而MC14433仅为一路输入,故采用CD4051组成多路分时的模拟量信号采集电路,其硬件接口如图3-6所示

图3-6八路分时的模拟量信号采集电路硬件接口

3.1.2湿度传感器

下面介绍HS1100/HS1101湿度传感器及其应用。

一、特点

图3-7a为湿敏电容工作的温、湿度范围。

图3-7b为湿度-电容响应曲线。

图3-7a、湿敏电容工作的温、湿度范围图3-7b、湿度-电容响应曲线。

二、湿度测量电路

如何将电容的变化量准确地转变为计算机易于接受的信号,常有两种方法:

一是将该湿敏电容置于运方与租蓉组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;

另一种是将该湿敏电容置于555振荡电路中,将电容值的变化转为与之成反比的电压频率信号,可直接被计算机所采集

频率输出的555测量振荡电路如图3-7所示。

集成定时器555芯片外接电阻R4、R2与湿敏电容C,构成了对C的充电回路。

7端通过芯片内部的晶体管对地短路又构成了对C的放电回路,并将引脚2、6端相连引入到片内比较器,便成为一个典型的多谐振荡器,即方波发生器。

另外,R3是防止输出短路的保护电阻,R1用于平衡温度系数。

图3-7、频率输出的555振荡电路

该振荡电路两个暂稳态的交替过程如下:

首先电源Vs通过R4、R2向C充电,经t充电时间后,Uc达到芯片内比较器的高触发电平,约0.67Vs,此时输出引脚3端由高电平突降为低电平,然后通过R2放电,经t放电时间后,Uc下降到比较器的低触发电平,约0.33Vs

此时输出,此时输出引脚3端又由低电平突降为高电平,如此翻来覆去,形成方波输出。

其中,充放电时间为

t充电=C(R4+R2)Ln2

t放电=CR2Ln2

因而,输出的方波频率为

f=1/(t放电+t充电)=1/[C(R4+R2)Ln2]

可见,空气湿度通过555测量电路就转变为与之呈反比的频率信号,表3-1给出了其中的一组典型测试值。

表3-1、空气湿度与电压频率的典型值

三、多路检测信号的实现

本设计系统为八路的湿度信号采集,故采用CD4051组成多路分时的模拟量信号采集电路,其硬件接口如图3-8所示

图3-8八路分时的模拟量信号采集电路硬件接口

3.1.3多路开关

多路开关,有称“多路模拟转换器”。

多路开关通常有n个模拟量输入通道和一个公共的模拟输入端,并通过地址线上不同的地址信号把n个通道中任一通道输入的模拟信号输出,实现有n线到一线的接通功能。

反之,当模拟信号有公共输出端输入时,作为信号分离器,实现了1线到n线的分离功能。

因此,多路开关通常是一种具有双向能力的器件。

在本设计中,由于采用了温湿度双量控制,所以在信号采集中将有两个模拟量被提取,这时选用多路开关就是很必要的。

我选用的是CD4051多路开关,它是一种单片、COMS、8通道开关。

该芯片由DTL/TTL-COMS电平转换器,带有禁止端的8选1译码器输入,分别加上控制的8个COMS模拟开关TG组成。

CD4051的内部原理框图如图3-9所示。

图3-9、CD4051的内部原理框图   

图中功能如下:

通道线IN/OUT(4、2、5、1、12、15、14、13):

该组引脚作为输入时,可实现8选1功能,作为输出时,可实现1分8功能。

XCOM(3):

该引脚作为输出时,则为公共输出端;

作为输入时,则为输入端。

A、B、C(11、10、9):

地址引脚

INH(6):

禁止输入引脚。

若INH为高电平,则为禁止各通道和输出端OUT/IN接至;

若INH为低电平,则允许各通道按表3-2关系和输出段OUT/IN接通。

VDD(16)和VSS(8):

VDD为正电源输入端,极限值为17V;

VSS为负电源输入端,极限值为-17V。

VGG(7);

电平转换器电源,通常接+5V或-5V。

CD4051作为8选1功能时,若A、B、C均为逻辑“0”(INH=0),则地址码00013经译码后使输出端OUT/IN和通道0接通。

其它情况下,输出端OUT/IN输出端OUT/IN和各通道的接通关系如下

表3-2

输入状态

接通

通道

输入状态

INH

C

B

A

1

5

6

0

2

7

3

x

均不显示

4

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2