高职院校:工程力学基础课件PPT推荐.ppt

上传人:聆听****声音 文档编号:4281297 上传时间:2023-05-03 格式:PPT 页数:203 大小:12.26MB
下载 相关 举报
高职院校:工程力学基础课件PPT推荐.ppt_第1页
第1页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第2页
第2页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第3页
第3页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第4页
第4页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第5页
第5页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第6页
第6页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第7页
第7页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第8页
第8页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第9页
第9页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第10页
第10页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第11页
第11页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第12页
第12页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第13页
第13页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第14页
第14页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第15页
第15页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第16页
第16页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第17页
第17页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第18页
第18页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第19页
第19页 / 共203页
高职院校:工程力学基础课件PPT推荐.ppt_第20页
第20页 / 共203页
亲,该文档总共203页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高职院校:工程力学基础课件PPT推荐.ppt

《高职院校:工程力学基础课件PPT推荐.ppt》由会员分享,可在线阅读,更多相关《高职院校:工程力学基础课件PPT推荐.ppt(203页珍藏版)》请在冰点文库上搜索。

高职院校:工程力学基础课件PPT推荐.ppt

力的可传性原理,静力学,公理3力的平行四边形法则,作用于物体上同一点的两个力可合成一个合力,此合力也作用于该点,合力的大小和方向由以原两力矢为邻边所构成的平行四边形的对角线来表示。

力的三角形法则,FR,FR,静力学,刚体受三力作用而平衡,若其中两力作用线汇交于一点,则另一力的作用线必汇交于同一点,且三力的作用线共面。

(必共面,在特殊情况下,力在无穷远处汇交平行力系。

),推论2:

三力平衡汇交定理,三力必汇交,且共面。

也为平衡力系。

又二力平衡必等值、反向、共线,,FR,静力学,公理4作用力和反作用力定律,等值、反向、共线、异体、且同时存在。

例吊灯,静力学,公理5刚化原理,变形体在某一力系作用下处于平衡,如将此变形体变成刚体(刚化为刚体),则平衡状态保持不变。

公理5告诉我们:

处于平衡状态的变形体,可用刚体静力学的平衡理论。

静力学,1-3约束与约束反力,一、概念,位移不受限制的物体叫自由体。

自由体:

静力学,位移受限制的物体叫非自由体。

非自由体:

静力学,大小常常是未知的;

方向总是与约束限制的物体的位移方向相反;

作用点在物体与约束相接触的那一点。

约束力特点:

G,约束力:

约束与非自由体接触相互产生了作用力,约束作用于非自由体上的力叫约束力或称为约束反力。

约束:

对非自由体的某些位移预先施加的限制条件称为约束。

(这里,约束是名词,而不是动词的约束。

),F,G,FN1,FN2,静力学,二、约束类型和确定约束反力方向的方法:

1.柔索:

由柔软的绳索、链条或皮带构成的约束,绳索类只能受拉,约束反力作用在接触点,方向沿绳索背离物体。

静力学,F1,F2,约束力方向与所能限制的物体运动方向相反。

约束力方向与所能限制的物体运动方向相反。

F1,F2,柔绳约束,胶带构成的约束,柔索约束,柔绳约束,链条构成的约束,约束力方向与所能限制的物体运动方向相反。

绳索、链条、皮带,柔索,约束力方向与所能限制的物体运动方向相反。

静力学,约束反力作用在接触点处,方向沿公法线,指向受力物体,2光滑支承面约束,凸轮顶杆机构,固定铰支座:

物体与固定在地基或机架上的支座有相同直径的孔,用一圆柱形销钉联结起来,这种构造称为固定铰支座。

中间铰:

如果两个有孔物体用销钉连接轴承:

3光滑圆柱铰链约束,静力学,光滑圆柱铰链约束,圆柱铰链,A,A,约束反力过铰链中心,用XA、YA表示,静力学,固定铰支座,固定铰支座,固定铰支座,静力学,固定铰支座,中间铰,销钉,中间铰,简化表示:

约束力表示:

静力学,4活动铰支座(辊轴支座),在固定铰链支座的底部安装一排滚轮,可使支座沿固定支承面滚动。

活动铰支座,活动铰支座,其它表示,活动铰支座,光滑圆柱铰链约束实例,固定铰链支座,活动铰链支座,40,A,空间,5光滑球铰链,反力是过球铰中心的FAx、FAy、FAz三个分力。

6二力构件,二力构件,二力构件的约束力沿连杆两端铰链的连线,指向不定,通常假设受拉。

翻斗车,二力构件,7、其它约束,约束反力垂直于滑道、导轨,指向亦待定。

滑道、导轨:

静力学,解决力学问题时,首先要选定需要进行研究的物体,即选择研究对象;

然后根据已知条件,约束类型并结合基本概念和公理分析它的受力情况,这个过程称为物体的受力分析。

1-4物体的受力分析和受力图,作用在物体上的力有:

一类是主动力:

如重力,风力,气体压力等。

二类是被动力:

即约束反力。

一、受力分析,静力学,补:

解除约束原理,当受约束的物体在某些主动力的作用下处于平衡,若将其部分或全部的约束除去,代之以相应的约束反力,则物体的平衡不受影响。

意义:

在解决实际物体的平衡问题时,可以将该物体所受的各种约束解除,而用相应的约束反力去代替它们对于物体的作用。

这时,物体在所有主动力和约束力作用下,仍然保持平衡,但物体已经被抽象成为一个不受任何约束作用的自由体了,因而就可利用静力学所得出的关于自由刚体的平衡条件来解决受有各种不同约束的物体的平衡问题。

静力学,画物体受力图主要步骤为:

选研究对象;

去约束,取分离体;

画上主动力;

画出约束反力。

二、受力图,例1,G,静力学,例2画出下列各构件的受力图,静力学,例2画出下列各构件的受力图,A,C,D,B,E,FA,FB,FC,静力学,例3画出下列各构件的受力图,说明:

三力平衡必汇交当三力平行时,在无限远处汇交,它是一种特殊情况。

静力学,例4尖点问题,静力学,例5画出下列各构件的受力图,静力学,三、画受力图应注意的问题,除重力、电磁力外,物体之间只有通过接触才有相互机械作用力,要分清研究对象(受力体)都与周围哪些物体(施力体)相接触,接触处必有力,力的方向由约束类型而定。

2、不要多画力,要注意力是物体之间的相互机械作用。

因此对于受力体所受的每一个力,都应能明确地指出它是哪一个施力体施加的。

1、不要漏画力,静力学,约束反力的方向必须严格地按照约束的类型来画,不能单凭直观或根据主动力的方向来简单推想。

在分析两物体之间的作用力与反作用力时,要注意,作用力的方向一旦确定,反作用力的方向一定要与之相反,不要把箭头方向画错。

即受力图一定要画在分离体上。

4、受力图上不能再带约束。

静力学,一个力,属于外力还是内力,因研究对象的不同,有可能不同。

当物体系统拆开来分析时,原系统的部分内力,就成为新研究对象的外力。

对于某一处的约束反力的方向一旦设定,在整体、局部或单个物体的受力图上要与之保持一致。

5、受力图上只画外力,不画内力。

6、同一系统各研究对象的受力图必须整体与局部一致,相互协调,不能相互矛盾。

7、正确判断二力构件。

静力学,本章作业,131415,57,第二章汇交力系,工程力学,58,静力学,汇交力系:

各力的作用线汇交于一点的力系。

引言,研究方法:

几何法,解析法。

例:

起重机的挂钩。

力系分为:

平面力系、空间力系,59,21汇交力系合成和平衡的几何法22汇交力系合成和平衡的解析法,第二章汇交力系,60,静力学,2-1汇交力系合成与平衡的几何法,一、合成的几何法,1.两个共点力的合成,合力方向可应用正弦定理确定:

由余弦定理:

力的平行四边形法则,力的三角形法则,FR,FR,61,静力学,2.任意个共点力的合成,力多边形法则,即:

汇交力系的合力等于各分力的矢量和,合力的作用线通过各力的汇交点。

即:

结论:

FR,62,静力学,二、汇交力系平衡的几何条件,在几何法求力系的合力中,合力为零意味着力多边形自行封闭。

汇交力系平衡的充要条件是:

力多边形自行封闭。

或:

力系中各力的矢量和等于零。

汇交力系平衡的必要与充分的几何条件是:

FR,FR,63,静力学,例1已知压路机碾子重P=20kN,r=60cm,欲拉过h=8cm的障碍物。

求:

在中心作用的水平力F的大小和碾子对障碍物的压力。

选碾子为研究对象,取分离体画受力图,解:

NA,FB,FA,64,静力学,又由几何关系:

当碾子刚离地面时FA=0拉力F、自重P及支反力FB构成一平衡力系。

由平衡的几何条件,力多边形封闭,故,由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。

F=11.5kN,FB=23.1kN,所以,FB,FB,65,静力学,例2求当F力达到多大时,球离开地面?

已知P、R、h,解:

FB=0时为球离开地面,研究球,受力如图:

作力三角形,解力三角形:

66,静力学,研究块,受力如图,,作力三角形,解力三角形:

67,静力学,几何法解题步骤:

画出受力图;

作力多边形;

求出未知数。

几何法解题不足:

计算繁;

不能表达各个量之间的函数关系。

68,静力学,力的三要素:

大小、方向、作用点(线)大小:

作用点:

与物体的接触点方向:

由、g三个方向角确定由仰角与俯角来确定。

一、力在空间的表示:

2-2汇交力系合成与平衡的解析法,69,静力学,1、一次投影法(直接投影法),二、力在空间直角坐标轴上的投影,2、二次投影法(间接投影法),70,静力学,3、力在平面坐标轴上的投影,Fx=Fcosa,Fy=Fsina,A,B,y,x,Fx,Fy,F,a,o,说明:

(1)Fx的指向与x轴一致,为正,否则为负;

(2)力在坐标轴上的投影为标量。

71,静力学,若以表示力沿直角坐标轴的正交分量,则:

而:

所以:

三、力的解析表达式:

72,静力学,四、合力投影定理,由图可看出,各分力在x轴和在y轴投影的和分别为:

合力投影定理:

合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。

FRx,F2x,F1x,F3x,F4x,x,y,o,73,静力学,合力的大小:

为该力系的汇交点,方向:

作用点:

五、汇交力系合成的解析法,1、平面汇交力系,74,静力学,即:

合力等于各分力的矢量和。

2、空间汇交力系的合成:

为合力在x轴的投影,75,静力学,六、汇交力系平衡的解析法,平面汇交力系平衡的必要与充分条件是该力系的合力为零。

平面汇交力系平衡的解析条件平面汇交力系的平衡方程。

说明:

两个方程可求解两个未知量;

投影轴可任意选择。

解题步骤:

选择研究对象画出研究对象的受力图(取分离体)列平衡方程(选投影轴),1、平面汇交力系的平衡,76,静力学,2、空间汇交力系的平衡:

空间汇交力系平衡的充要条件是:

力系的合力为零,即:

空间汇交力系的平衡方程,说明:

空间汇交力系只有三个独立平衡方程,只能求解三个未知量。

上式中三个投影轴可以任取,只要不共面、其中任何两轴不相互平行。

77,静力学,解:

研究C,例3已知AC=BC=l,h,P.求:

FAC,FBC,画出受力图,列平衡方程,h,78,静力学,79,静力学,解:

研究AB杆画出受力图列平衡方程,例4已知P=2kN求FCD,FA,80,静力学,解平衡方程,由EB=BC=0.4m,,解得:

FA,FCD,81,静力学,例5已知如图P、Q,求平衡时=?

地面的反力FD=?

解:

研究球:

82,例6已知:

AB=3m,AE=AF=4m,Q=20kN;

绳BE、BF的拉力和杆AB的内力,由C点:

分别研究C点和B点,83,静力学,由B点:

84,以A为研究对象,例72-9解:

85,静力学,1、一般地,对于只受三个力作用的物体,且角度特殊时用几何法(解力三角形)比较简便。

解题技巧及说明:

3、投影轴常选择与未知力垂直,最好使每个方程中只有一个未知数。

2、一般对于受多个力作用的物体,用解析法。

5、解析法解题时,力的方向可以任意设,如果求出负值,说明力方向与假设相反。

对于二力构件,一般先设为拉力,如果求出负值,说明物体受压力。

4、对力的方向判定不准的,一般用解析法。

86,静力学,本章作业,2-62-82-10,87,第三章力偶系,工程力学,88,力偶:

大小相等、方向相反且作用线不重合的两个力组成的力系叫力偶。

用(F,F)表示,力偶的作用面,力偶臂,力偶系:

作用在刚体上的一群力偶。

力偶的作用效应:

使刚体转动(由两个力共同作用引起)。

移动效应-取决于力的大小、方向;

转动效应-取决于力矩的大小、方向。

力的作用效应:

力偶系,89,31力对点之矩32力对轴之矩33力偶矩矢34力偶的等效条件和性质35力偶系的合成与平衡,第三章力偶系,90,31力对点之矩,力偶系,一、平面中力对点的矩,力臂,矩心,平面内力对点之矩是代数量,不仅与力的大小有关,且与矩心位置有关。

当F=0或h=0时,=0。

说明:

力对点之矩不因力的作用线移动而改变。

互成平衡的两个力对同一点之矩的代数和为零。

91,31力对点之矩,力偶系,二、力对点的矩矢,力对点之矩矢等于矩心到该力作用点的矢径与该力的矢量积。

力对点之矩矢是过矩心O的定位矢量。

力对点之矩矢服从矢量的合成法则。

力F对刚体产生绕O点转动效应取决于:

转动效应的强度转动轴的方位(力F与矩心O所在平面法向)使刚体绕转动轴转动的方向,92,31力对点之矩,力偶系,二、力对点的矩矢,x,x,y,y,z,z,F,O,r,93,31力对点之矩,力偶系,三、合力矩定理,定理:

合力对任一点之矩矢,等于所有各分力对同一点之矩矢的矢量和(平面力系内为代数和)。

已知:

力系(F1,F2,F3,Fn)可以合成为一个合力FR,则:

平面力系:

94,F,Fx,Fy,O,x,y,x,y,平面内力矩的解析表达式,95,解:

用力对点的矩法,例1已知:

如图F、Q、l,求:

和,应用合力矩定理,96,解:

例2已知:

如图F、R、r,求:

应用合力矩定理,97,解:

例3已知:

如图q、l,求:

合力的大小和作用线位置。

98,解:

例4已知:

99,力偶系,3-2力对轴之矩,一、力对轴之矩的概念与计算,100,定义:

力对轴之矩是代数量。

符号规定:

右手法则。

力对平行它的轴之矩为零。

当力通过轴时,力对轴之矩为零。

即力F与轴共面时,力对轴之矩为零。

101,力对轴之矩是力使刚体绕该轴转动效应的度量,是代数量,其大小等于在垂直于转轴的平面内的分量的大小和它与转轴间垂直距离的乘积,其正负号按右手规则确定。

102,故:

二、力对点之矩与力对通过该点的轴之矩的关系,通过O点作任一轴z,则:

由几何关系:

103,定理:

力对点的矩矢在通过该点的任意轴上的投影等于这力对于该轴的矩。

这就是力对点之矩与对通过该点轴之矩的关系。

又由于,所以力对点O的矩为:

104,即:

空间力系的合力对某一轴的矩,等于力系中所有各分力对同一轴的矩的代数和。

三、合力矩定理,105,例4已知:

P=2000N,C点在Oxy平面内。

力P对三个坐标轴的矩。

106,107,33力偶矩矢,力偶系,一、力偶效应的度量,设在刚体上作用有力偶(F,F),现研究它对O点的转动效应。

力偶(F,F)对O点的转动效应可用一矩矢M来度量。

力偶矩矢,力偶矩矢M与O点位置无关,是自由矢量。

力偶矩矢由其模、方位和指向确定。

108,33力偶矩矢,力偶系,二、力偶矩矢的确定,力偶矩矢,力偶矩矢的模(大小):

力偶矩矢的方位:

沿力偶作用面的法向(表示力偶作用面的方位),力偶矩矢的指向:

按右手法则确定(表示力偶的转向),力偶矩矢的三要素:

力偶矩的大小、作用面的方位和转向。

109,三、平面力偶(代数量),力偶的作用面,力偶臂,力偶矩:

m=Fd,四、空间力偶(矢量),110,34力偶的等效条件和性质,力偶系,一、力偶的等效条件,力偶矩矢,性质1:

力偶无合力,本身又不平衡,是一个基本力学量。

力偶只能和力偶平衡,而不能和一个力平衡。

两个力偶等效,力偶矩矢相等,二、力偶的性质,111,二、力偶的性质,性质2:

力偶中两个力在任意坐标轴上投影之代数和为零。

性质3:

力偶中两力对任一点取矩之和恒等于力偶矩,而与矩心的位置无关。

性质4:

力偶可以在其作用面内任意移动或转动,或移到另一平行平面,而不影响它对刚体的作用效应。

力偶系,112,性质5:

只要保持力偶矩大小和转向不变,可以任意改变力偶中力的大小和相应力偶臂的长短,而不改变它对刚体的作用效应。

力偶系,113,3-5力偶系的合成与平衡,设有两个力偶,由于力偶矩矢是自由矢量,可任意平行移动,故可将其按照矢量合成的方法进行合成。

力偶系,一、力偶系的合成,114,对于n个力偶组成的力偶系:

力偶系,对于n个力偶组成的平面力偶系:

平面力偶系合成结果是一个合力偶,其力偶矩为各力偶矩的代数和。

一、力偶系的合成,115,力偶系平衡的充要条件是:

合力偶矩矢等于零,即所有各力偶矩矢的矢量和等于零。

平面力偶系平衡的充要条件是:

合力偶矩等于零,即所有各力偶矩的代数和等于零。

力偶系的平衡方程,二、力偶系的平衡,116,例5在一钻床上水平放置工件,在工件上同时钻四个等直径的孔,每个钻头的力偶矩为求工件的总切削力偶矩和A、B端水平反力?

解:

各力偶的合力偶距为,117,根据平面力偶系平衡方程有:

由力偶只能与力偶平衡的性质,力NA与力NB组成一力偶。

118,例6已知:

M11kNm,l1m,求平衡时M2?

AB:

CD:

119,例7已知:

M13m/2,M2m/2,CD=l,求:

AB、AC杆所受力。

C:

120,本章作业,323538,121,第四章平面任意力系,工程力学,122,静力学,第四章平面任意力系,平面任意力系:

各力的作用线在同一平面内,既不汇交为一点又不相互平行的力系叫平面任意力系。

平面任意力系,平面力偶系,平面汇交力系,合成,平衡,合成,平衡,FR=Fi,M=Mi,Mi=0,Fx=0Fy=0,力线平移定理,123,第四章平面任意力系,41力线平移定理42平面任意力系的简化43平面任意力系的平衡条件和平衡方程44平面平行力系的平衡方程45静定与静不定问题物体系统的平衡,124,静力学,4-1力线平移定理,力线平移定理:

证,力,力系,但必须同时附加一个力偶。

这个力偶的力偶矩等于原来的力,作用在刚体上点A的力,,可以平行移到刚体上任一点B,,对新作用点B的矩。

125,静力学,力平移的条件是附加一个力偶M,且M与d有关,M=Fd力线平移定理揭示了力与力偶的关系:

力力+力偶力线平移定理的逆定理成立。

力力+力偶力线平移定理是力系简化的理论基础。

力线平移定理可将平面任意力系转化为平面汇交力系和平面力偶系进行研究。

126,静力学,力系的主矢:

力系中各力的矢量和。

127,力系的主矩:

力系中各力对任一点取矩的矢量和。

128,力系等效定理:

两个力系相互等效的充分与必要条件是主矢量相等,对任一点的主矩相等。

适用范围:

刚体。

应用:

力系的简化。

静力学,零力系:

力系的主矢量和对任一点的主矩均等于零。

129,静力学,4-2平面任意力系向一点简化,平面任意力系(未知力系),平面力偶系(已知力系),平面汇交力系:

(已知力系),力(主矢量):

力偶(主矩):

FR=F,Mo=M,向任一点O简化,(作用在简化中心),(作用在该平面上),FR,130,主矢,静力学,(移动效应),大小:

方向:

简化中心(与简化中心位置无关)因主矢等于各力的矢量和,一般情况:

131,静力学,主矩MO,(转动效应),固定端(插入端)约束,雨搭,车刀,大小:

简化中心:

(与简化中心有关)(因主矩等于各力对简化中心取矩的代数和),132,静力学,固定端(插入端)约束的约束反力:

认为Fi这群力在同一平面内;

FAx,FAy限制物体平动,MA为限制转动。

FAx,FAy,MA为固定端约束反力;

FRA方向不定可用正交分力FAx,FAy表示;

将Fi向A点简化得一力和一力偶;

133,静力学,简化结果分析合力矩定理,简化结果:

主矢,主矩MO,下面分别讨论。

=0,MO=0,则力系平衡,下节专门讨论。

=0,MO0,即简化结果为一合力偶,M=MO此时刚体等效于只有一个力偶的作用,(因为力偶可以在刚体平面内任意移动,故这时,主矩与简化中心O无关。

),0,MO=0,即简化为一个作用于简化中心的合力。

这时,简化结果就是合力(这个力系的合力),。

(此时与简化中心有关,换个简化中心,主矩不为零),134,静力学,合力的大小等于原力系的主矢合力的作用线位置,0,MO0,为最任意的情况。

此种情况还可以继续简化为一个合力。

135,静力学,合力矩定理:

平面任意力系的合力对作用面内任一点之矩等于力系中各力对于同一点之矩的代数和。

合力矩定理:

由于主矩,而合力对O点的矩,合力矩定理,由于简化中心是任意选取的,故此式有普遍意义,136,静力学,4-3平面任意力系的平衡条件与平衡方程,平面任意力系平衡的充要条件为:

=0,MO=0,力系平衡,平面任意力系的平衡方程,力系的主矢和主矩MO都等于零,137,静力学,例1已知:

q=4kN/m,F=5kN,l=3m,=25o,求:

A点的支座反力?

(1)选AB梁为研究对象。

(2)画受力图,(3)列平衡方程,求未知量。

138,静力学,例2已知:

Q=7.5kN,P=1.2kN,l=2.5m,a=2m,=30o,求:

BC杆拉力和铰A处的支座反力?

(2)画受力图,139,静力学,例2已知:

(3)列平衡方程,求未知量。

140,静力学,例2已知:

141,静力学,(3)列平衡方程,求未知量。

142,静力学,二矩式,条件:

x轴不垂直于AB连线,三矩式,条件:

A,B,C不在同一直线上,只有三个独立方程,只能求出三个未知数。

投影轴和矩心是任意选取的,一般先取矩。

矩心选择在多个未知力的交点上;

投影轴尽量与未知力垂直或平行。

基本式(一矩式),平面任意力系的平衡方程:

143,静力学,例3已知:

q,a,P=qa,M=Pa,求:

A、B两点的支座反力?

选AB梁为研究对象。

画受力图,列平衡方程,求未知量。

144,平衡的充要条件为:

主矢FR=0主矩MO=0,静力学,4-4平面平行力系的平衡方程,平面平行力系:

各力的作用线在同一平面内且相互平行的力系。

设有F1,F2Fn为一平行力系,,向O点简化得:

合力作用线的位置为:

145,静力学,平面平行力系的平衡方程为:

平面平行力系中各力在x轴上的投影恒等于零,即:

平面平行力系只有两个独立方程,只能求解两个独立的未知数。

146,静力学,例4已知:

P=20kN,M=16kNm,q=20kN/m,a=0.8m求:

A、B的支反力。

研究AB梁,147,静力学,例5已知:

塔式起重机P=700kN,W=200kN(最大起重量),尺寸如图。

保证满载和空载时

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2