新人教版高中物理选修35同步练习碰撞Word格式.docx

上传人:b****2 文档编号:43599 上传时间:2023-04-28 格式:DOCX 页数:15 大小:51.49KB
下载 相关 举报
新人教版高中物理选修35同步练习碰撞Word格式.docx_第1页
第1页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第2页
第2页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第3页
第3页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第4页
第4页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第5页
第5页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第6页
第6页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第7页
第7页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第8页
第8页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第9页
第9页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第10页
第10页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第11页
第11页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第12页
第12页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第13页
第13页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第14页
第14页 / 共15页
新人教版高中物理选修35同步练习碰撞Word格式.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

新人教版高中物理选修35同步练习碰撞Word格式.docx

《新人教版高中物理选修35同步练习碰撞Word格式.docx》由会员分享,可在线阅读,更多相关《新人教版高中物理选修35同步练习碰撞Word格式.docx(15页珍藏版)》请在冰点文库上搜索。

新人教版高中物理选修35同步练习碰撞Word格式.docx

解析 两球在碰撞前后,水平方向不受外力,故水平方向两球组成的系统动量守恒,由动量守恒定律得mv0=mv1+3mv2,又两球碰撞是弹性的,故机械能守恒,即mv=mv+×

3mv,联立两式解得v1=-,v2=,可见第一次碰撞后的瞬间,两球的速度大小相等,A正确;

因两球质量不相等,故两球碰后的动量大小不相等,B错误;

两球碰后上摆的过程机械能守恒,且初速度大小相同,故上升的最大高度相等,另摆长相等,故两球碰后的最大摆角相同,C错误;

由于第一次碰撞后两球速度大小相等,故返回各自最低点所用时间相同,所以第二次碰撞发生在各自的最低点处,D正确。

5.

如图所示,在光滑水平面上有直径相同的a、b两球,在同一直线上运动,选定向右为正方向,两球的动量分别为pa=6kg·

m/s、pb=-4kg·

m/s。

当两球相碰之后,两球的动量可能是(  )

A.pa=2kg·

m/s,pb=0

B.pa=-4kg·

m/s,pb=6kg·

m/s

C.pa=-6kg·

m/s,pb=8kg·

D.pa=-6kg·

m/s,pb=4kg·

答案 B

解析 A项与实际不符,a球不可能穿过停止的b球向前运动,故错误;

两球的动量分别为pa=6kg·

m/s,pb=-4kg·

m/s,系统动量守恒,选定向右为正方向,根据碰撞过程中动量守恒可知:

碰撞后的总动量应等于原来总动量2kg·

pa=-4kg·

m/s,a、b小球的动量满足动量守恒定律,不违背物体的运动规律,也符合机械能不能增大的规律,故B正确;

a球的动量大小不变,a球的动能不变,b球的动量大小增大,b球的动能增加了,不符合系统机械能不能增大的规律,故C错误;

D项中碰后的合动量为-2kg·

m/s,系统动量不守恒,故D错误。

6.甲、乙两铁球质量分别是m甲=1kg、m乙=2kg。

在光滑水平面上沿同一直线运动,速度分别是v甲=6m/s、v乙=2m/s。

甲追上乙发生正碰后两物体的速度有可能是(  )

A.v甲′=7m/s,v乙′=1.5m/s

B.v甲′=2m/s,v乙′=4m/s

C.v甲′=3.5m/s,v乙′=3m/s

D.v甲′=4m/s,v乙′=3m/s

解析 选项A和B、D均满足动量守恒条件,但碰后总动能大于碰前总动能,选项A错误、B正确;

选项C不满足动量守恒条件,错误;

选项D满足动量守恒条件,且碰后总动能小于碰前总动能,但碰后甲球速度大于乙球速度,要发生第2次碰撞,不合理,错误。

7.如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相同的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是(  )

A.A开始运动时B.A的速度等于v时

C.B的速度等于零时D.A和B的速度相等时

解析 对A、B系统由于水平面光滑,所以动量守恒。

而对A、B、弹簧系统机械能守恒,即A、B动能与弹簧弹性势能之和为定值。

当A、B速度相等时,弹簧形变量最大,弹性势能最大,所以此时动能损失最大。

8.

如图所示,木块A、B的质量均为2kg,置于光滑水平面上,B与一轻质弹簧的一端相连,弹簧的另一端固定在竖直挡板上,当A以4m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,弹簧具有的弹性势能大小为(  )

A.4JB.8JC.16JD.32J

解析 A、B在碰撞过程中动量守恒,碰后粘在一起,共同压缩弹簧的过程中机械能守恒。

由碰撞过程中动量守恒得mAvA=(mA+mB)v,代入数据解得v==2m/s,所以碰后A、B及弹簧组成的系统的机械能为(mA+mB)v2=8J,当弹簧被压缩至最短时,系统的动能为0,只有弹性势能,由机械能守恒得此时弹簧的弹性势能为8J。

9.(多选)质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰。

碰撞后,A球的动能变为原来的,那么小球B的速度可能是(  )

A.v0B.v0C.v0D.v0

解析 要注意的是,两球的碰撞不一定是弹性碰撞,A球碰后动能变为原来的,则其速度大小仅为原来的。

取A球原来的运动方向为正方向,两球在光滑水平面上正碰,碰后A球的运动有两种可能,继续沿原方向运动或被反弹。

以A球原来的速度方向为正方向,则vA′=±

v0,根据两球碰撞前、后的总动量守恒,有mv0+0=m×

v0+2mvB′,mv0+0=m×

-v0+2mvB″,解得vB′=v0,vB″=v0,且均符合碰撞中机械能不增加。

10.(多选)向空中发射一枚炮弹,不计空气阻力,当此炮弹的速度恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则(  )

A.b的速度方向一定与原来速度方向相反

B.从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大

C.a、b一定同时到达水平地面

D.在炸裂过程中,a、b受到的爆炸力的大小一定相等

答案 CD

解析 炮弹炸裂前后动量守恒,选未炸裂前水平速度v0的方向为正方向,则mv0=mava+mbvb,显然vb>

0,vb<

0,vb=0都有可能;

vb>

va,vb<

va,vb=va也都有可能,A、B错误;

a、b高度相同,一定同时到达地面,C正确;

爆炸力是内力,D正确。

11.在光滑水平面的同一直线上,自左向右地依次排列质量均为m的一系列小球,另一质量为m的小球A以水平向右的速度v运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n次后,剩余的总动能为原来的,则n为(  )

A.5B.6C.7D.8

答案 C

解析 设碰撞n次后的速度为v′,则根据动量守恒定律得:

mv=(n+1)mv′,所以v′=v,剩余的总动能Ek′=(n+1)mv′2=×

mv2,碰前的动能Ek=mv2,因Ek′=Ek,则有=,所以n=7,故C正确。

12.质量为m,速度为v的A球跟质量为3m的静止的B球发生正碰。

碰撞可能是弹性的,也可能是非弹性的,因此碰撞后B球的速度可能值为(  )

A.0.6vB.0.4vC.0.2vD.0.1v

解析 若vB=0.6v,选v的方向为正,由动量守恒定律得:

mv=mvA+3m·

0.6v,得vA=-0.8v,碰撞前系统的总动能为Ek=mv2。

碰撞后系统的总动能为:

Ek′=mv+·

3mv=m(0.8v)2+·

3m(0.6v)2>

mv2,违反了能量守恒定律,不可能,故A错误;

若vB=0.4v,由动量守恒定律得:

0.4v,得vA=-0.2v,碰撞后系统的总动能为:

3mv=m(-0.2v)2+·

3m(0.4v)2<

mv2,不违反能量守恒定律,是可能的,故B正确;

A、B发生完全非弹性碰撞,则有:

mv=(m+3m)vB,vB=0.25v,这时B获得的速度最小,所以vB=0.2v,vB=0.1v是不可能的,故C、D错误。

13.在光滑的水平面上有一质量为0.2kg的小球以5.0m/s的速度向前运动,与质量为3.0kg的静止木块发生碰撞,假设碰撞后木块的速度是v木=4.2m/s,则(  )

A.碰撞后球的速度为v球=-1.3m/s

B.v木=4.2m/s这一假设不合理,因而这种情况不可能发生

C.v木=4.2m/s这一假设是合理的,碰撞后小球被弹回来

D.v木=4.2m/s这一假设是可能发生的,但由于题给条件不足,v球的大小不能确定

解析 假设这一过程可以实现,根据动量守恒定律有mv=mv球+m2v木,代入数据,解得:

v球=-58m/s,这一过程不可能发生,因为碰撞后机械能增加了。

14.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中。

若子弹均留在木块中,则三木块下落的时间tA、tB、tC的关系是(  )

A.tA<

tB<

tCB.tA>

tB>

tC

C.tA=tC<

tBD.tA=tB<

解析 由运动学规律知,tA=tC=。

B木块在竖直方向上速度为vB时,射入一竖直方向速度为零的子弹,根据动量守恒知,质量变大,竖直分速度变小,下落时间延长。

15.

(多选)如图所示,在水平桌面上固定着一个光滑圆轨道,在轨道的B点静止着一个质量为m2的弹性小球乙,另一个质量为m1的弹性小球甲从A点以初速度v0向右运动,与乙球发生第一次碰撞后,恰在C点发生第二次碰撞。

则甲、乙两球的质量之比m1∶m2等于(  )

A.1∶9B.1∶7C.5∶3D.2∶3

答案 BC

解析 质量为m1的甲球与质量为m2的乙球在B点发生弹性碰撞,设碰后甲球的速度为v1,乙球的速度为v2,根据动量守恒定律和能量守恒定律有:

m1v0=m1v1+m2v2,m1v=m1v+m2v,解得v1=v0,v2=v0。

由于第二次碰撞发生在C处,一种可能是碰后甲球反向由B经A、D到达C点,乙球逆时针到达C点,即=-,即=,得=,故B正确。

另一种可能是乙球逆时针由B经C、D、A、B再到达C,运动了1圆周,甲球运动圆周到达C,则=,即=,得=,故C正确。

16.

在光滑的水平面上有a、b两球,其质量分别为ma、mb,两球在t0时刻发生弹性正碰,两球在碰撞前后的速度图象如图所示。

下列关系正确的是(  )

A.ma>

mbB.ma<

mb

C.ma=mbD.无法判断

解析 由图可知b球碰前静止,设a球碰后速度为v1,b球速度为v2,物体碰撞过程中动量守恒,机械能守恒,所以有:

mav0=mav1+mbv2①

mav=mav+mbv②

联立①②得:

v1=v0,v2=v0,由图可知a球碰后速度反向,故ma<

mb,故A、C、D错误,B正确。

二、非选择题

17.质量分别为300g和200g的两个物体在无摩擦的水平面上相向运动,速度分别为50cm/s和100cm/s。

(1)如果两物体碰撞并粘合在一起,求它们共同的速度大小;

(2)求碰撞后损失的动能;

(3)如果碰撞是弹性碰撞,求两物体碰撞后的速度大小。

答案 

(1)0.1m/s 

(2)0.135J

(3)0.7m/s 0.8m/s

解析 

(1)设v1方向为正方向v1=50cm/s=0.5m/s,v2=-100cm/s=-1m/s,

设两物体碰撞后粘合在一起的共同速度为v,

由动量守恒定律得m1v1+m2v2=(m1+m2)v,

代入数据解得v=-0.1m/s,与v1的方向相反。

(2)碰撞后两物体损失的动能为

ΔEk=m1v+m2v-(m1+m2)v2

=×

0.3×

0.52+×

0.2×

(-1)2-×

(0.3+0.2)×

(-0.1)2J=0.135J。

(3)如果碰撞是弹性碰撞,设碰后两物体的速度分别为v1′、v2′,由动量守恒定律得

m1v1+m2v2=m1v1′+m2v2′

由机械能守恒定律得

m1v+m2v=m1v1′2+m2v2′2

代入数据得v1′=-0.7m/s,v2′=0.8m/s。

18.在军事演习中,一炮弹在离地面高h处时的速度方向恰好沿水平方向向左,速度大小为v,此时炮弹炸裂成质量相等的两块,设消耗的火药质量不计,爆炸后前半块的速度方向仍沿水平方向向左,速度大小为3v。

求两块弹片落地点之间的水平距离为多大。

答案 4v

解析 设爆炸后每块弹片的质量均为m,取向左为正方向,由动量守恒定律得2mv=m×

3v+mv′

则后半块弹片的速度v′=-v,即v′方向向右

由平抛运动知,弹片落地时间t=

因此两块弹片落地点间的水平距离为

x=3vt+|v′|t=4v。

19.从某高度自由下落一个质量为M的物体,当物体下落h时,突然炸裂成两块,已知质量为m的一块碎片恰能沿竖直方向回到开始下落的位置,求:

(1)刚炸裂时另一块碎片的速度;

(2)爆炸过程中有多少化学能转化为弹片的动能?

答案 

(1),方向竖直向下

(2)gh

解析 

(1)M下落h后:

Mgh=Mv2,v=

爆炸时动量守恒,设竖直向下为正方向:

Mv=-mv+(M-m)v′

解得v′=,方向竖直向下。

(2)爆炸过程中转化为动能的化学能等于系统动能的增加量,即

ΔEk=mv2+(M-m)v′2-Mv2

=(m-M)v2+=gh。

20.以初速度v0斜向上与水平方向成60°

角抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块。

其中质量较大的一块沿着手榴弹在最高点处爆炸前的速度方向以2v0的速度飞行。

(1)求质量较小的另一块弹片速度的大小和方向;

答案 

(1)2.5v0'

方向与手榴弹在最高点处爆炸前时速度方向相反

(2)mv

解析 

(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前时的速度:

v1=v0cos60°

=v0

设v1的方向为正方向,如图所示:

由动量守恒定律得:

3mv1=2mv1′+mv2

其中爆炸后质量较大的弹片速度v1′=2v0,

解得v2=-2.5v0,“-”号表示v2的方向与手榴弹在最高点处爆炸前时速度方向相反。

(2)爆炸过程中转化为动能的化学能等于系统动能的增量,即:

ΔEk=(2m)v1′2+mv-(3m)v=mv。

21.

在光滑的水平面上,质量为m1的小球A以速率v0向右运动。

在小球A的前方O点处有一质量为m2的小球B处于静止状态,如图所示。

小球A与小球B发生正碰后小球A、B均向右运动。

小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO。

假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,小球B与墙壁的碰撞时间可忽略不计,求两小球质量之比。

答案 2∶1

解析 由于小球B与墙壁之间的碰撞是弹性的,所以从两小球碰撞后到它们再次相遇,小球A和B的速度大小保持不变。

又小球B与墙壁的碰撞时间可忽略不计,设小球A、B碰撞后小球A和B的速度大小分别为v1和v2,则从两小球相碰到P点再次相遇,它们通过的路程分别为sA=PO=v1t,sB=(PO+2PQ)=v2t,

又PQ=1.5PO,解得=4。

A、B两球在弹性碰撞过程中动量守恒、机械能守恒

m1v0=m1v1+m2v2

m1v=m1v+m2v

解得:

v1=v0,v2=v0,

又=4,可得=2∶1。

22.

如图所示,在水平光滑直导轨上,静止着三个质量为m=1kg的相同小球A、B、C,现让A球以v0=2m/s的速度向着B球运动,A、B两球碰撞后粘合在一起,两球继续向右运动并跟C球碰撞,C球的最终速度vC=1m/s。

求:

(1)A、B两球跟C球相碰前的共同速度是多大?

(2)两次碰撞过程中一共损失了多少动能?

答案 

(1)1m/s 

(2)1.25J

解析 

(1)A、B相碰满足动量守恒定律:

mv0=2mv1,

计算得出两球跟C球相碰前的速度v1=1m/s。

(2)A、B两球与C球碰撞同样满足动量守恒定律:

2mv1=mvC+2mv2,

代入已知数据得A、B两球与C球碰后的速度v2=0.5m/s,

两次碰撞损失的动能:

ΔEk=mv-·

2mv-mv

计算得出ΔEk=1.25J。

23.

如图所示,质量为m的子弹,以速度v0水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹射出木块的速度为v,求子弹射出木块后的瞬间绳子中的张力大小。

答案 Mg+

解析 子弹射过木块的过程中系统动量守恒,取向左为正方向,则:

mv0=mv+Mv′,

v′=

随后木块以v′向左摆动做圆周运动,在最低点木块受重力和绳子拉力作用,由牛顿第二定律得:

T-Mg=M

T=Mg+。

24.如图所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接,质量为m1的小球从高为h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为m2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。

求碰撞后小球m2的速度大小v2。

答案 

解析 设m1碰撞前的速度为v10,根据机械能守恒定律有m1gh=m1v

解得v10=①

设碰撞后m1与m2的速度分别为v1和v2,根据动量守恒定律有m1v10=m1v1+m2v2②

由于碰撞过程中无机械能损失

m1v=m1v+m2v③

联立②③式解得v2=④

将①代入④得v2=。

25.

在光滑的水平面上,一质量为mA=0.1kg的小球A,以8m/s的初速度向右运动,与质量为mB=0.2kg的静止小球B发生对心正碰。

碰后小球B滑向与水平面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。

g=10m/s2。

(1)碰撞后小球B的速度大小;

(2)小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量;

(3)碰撞过程中系统的机械能损失。

答案 

(1)5m/s 

(2)+1N·

s,方向水平向左 (3)0.5J

解析 

(1)小球B恰好通过半圆形轨道最高点,有

mBg=mB,代入数据解得vN=m/s,方向向左。

小球B从轨道最低点M运动到最高点N的过程应用动能定理得:

-mBg·

2R=mBv-mBv,

联立得vM=5m/s。

(2)规定向右为正方向,合外力对小球B的冲量为

I=-mBvN-mBvM

=-0.2×

s-0.2×

5N·

s

=-N·

s,即大小为+1N·

s,方向水平向左。

(3)碰撞过程中动量守恒有:

mAv0=mAvA+mBvM,

解得vA=-2m/s,损失的机械能

ΔE=mAv-mAv-mBv=0.5J。

26.如图所示,在光滑水平面上叠放A、B两物体,质量分别为mA、mB,A与B间的动摩擦因数为μ,质量为m的小球以水平速度v射向A,以的速度大小返回,求:

(1)A与B相对静止时的速度大小;

(2)木板B至少多长,A才不至于滑落。

答案 

(1) 

(2)

解析 

(1)设水平向右为正方向,小球与A作用,根据动量守恒定律得:

mv=-m·

+mAvA①

A与B作用,设两者相对静止时的速度为v1,根据动量守恒定律得:

mAvA=(mA+mB)v1②

v1=③

(2)A、B在相互作用的过程中,系统减少的动能转化成内能,A恰好不滑落的条件为:

A恰好滑到B的右端时两者速度相等。

根据能量守恒定律得:

Q=mAv-(mA+mB)v④

Q=fL=μmAgL⑤

联立①③④⑤解得:

L=。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2