控制爆破施工工法docxWord格式.docx

上传人:b****1 文档编号:4475386 上传时间:2023-05-03 格式:DOCX 页数:25 大小:561.16KB
下载 相关 举报
控制爆破施工工法docxWord格式.docx_第1页
第1页 / 共25页
控制爆破施工工法docxWord格式.docx_第2页
第2页 / 共25页
控制爆破施工工法docxWord格式.docx_第3页
第3页 / 共25页
控制爆破施工工法docxWord格式.docx_第4页
第4页 / 共25页
控制爆破施工工法docxWord格式.docx_第5页
第5页 / 共25页
控制爆破施工工法docxWord格式.docx_第6页
第6页 / 共25页
控制爆破施工工法docxWord格式.docx_第7页
第7页 / 共25页
控制爆破施工工法docxWord格式.docx_第8页
第8页 / 共25页
控制爆破施工工法docxWord格式.docx_第9页
第9页 / 共25页
控制爆破施工工法docxWord格式.docx_第10页
第10页 / 共25页
控制爆破施工工法docxWord格式.docx_第11页
第11页 / 共25页
控制爆破施工工法docxWord格式.docx_第12页
第12页 / 共25页
控制爆破施工工法docxWord格式.docx_第13页
第13页 / 共25页
控制爆破施工工法docxWord格式.docx_第14页
第14页 / 共25页
控制爆破施工工法docxWord格式.docx_第15页
第15页 / 共25页
控制爆破施工工法docxWord格式.docx_第16页
第16页 / 共25页
控制爆破施工工法docxWord格式.docx_第17页
第17页 / 共25页
控制爆破施工工法docxWord格式.docx_第18页
第18页 / 共25页
控制爆破施工工法docxWord格式.docx_第19页
第19页 / 共25页
控制爆破施工工法docxWord格式.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

控制爆破施工工法docxWord格式.docx

《控制爆破施工工法docxWord格式.docx》由会员分享,可在线阅读,更多相关《控制爆破施工工法docxWord格式.docx(25页珍藏版)》请在冰点文库上搜索。

控制爆破施工工法docxWord格式.docx

采用多排爆破时,常将相邻两排炮孔交错排列。

图5-1台阶(梯段)深孔爆破孔网示意图

露天台阶深孔爆破参数选择得是否合理,直接关系到爆破工程的效率、爆破质量、爆破成本等,所以应当重视参数的选择。

5.1.2深孔爆破参数设计

(1)孔径

本工程钻孔中深孔爆破使用浙江开山牌KY100型履带式露天潜孔钻车、LGY-16/13G空压机,钻孔直径D=100mm,钻杆长每根3m。

(2)底盘抵抗线W1

露天深孔爆破的最小抵抗线的两种表示方法,即最小抵抗线W和底板抵抗线W1。

前者是指由装药中心到台阶坡面的最小距离;

后者是指炮孔中心线至台阶坡底线的水平距离。

为了计算方便和有利于减少留根底,一般不用最小抵抗线为参数,而用底板抵抗线。

底板抵抗线的大小与下列因素有关:

钻机的钻孔直径:

孔径越大,底板抵抗线也相应越大;

被爆岩石的性质:

可爆性好的岩石可以取较大值;

孔底使用的炸药:

炸药威力大,底板抵抗线的值可越大;

梯段高度:

高度越高,所取的底板抵抗线的值应该越大,但当梯段高度超过一定值后,底板抵抗线值与梯段高度无关。

底板抵抗线可用下式确定:

W1=kd

式中:

k——国内公路建设:

f=13,k=30~33;

f=10,k=35~37;

f=8,k=38~40;

f=6,k=41~43。

d——孔径,mm。

W1——般在2.5~3.5m之间。

本工程取2.5~3.0m。

(3)孔深与超深

孔深随地形变化而变化,一般为6~8m;

超深通常为(0.15~0.35)W1,取L3=0.5~1.0m。

(4)孔距和排距

孔距a=(1.0~1.25)W1,取a=2.5~3.0m。

排距b=(0.9~1.0)W1,取b=2.7m。

(5)填塞长度

合理的填塞长度L1=(30~40)d。

爆破时为避免飞石的产生,尤其是杜绝个别飞石垂直升起,炮孔填塞长度必须大于最小抵抗线20~50cm,取L1≥3.0m。

(6)单位炸药消耗量q

根据岩石的可爆性、炸药种类、自由面条件、起爆方式、块度要求并结合试爆情况确定。

根据《爆破手册》(汪旭光主编,冶金工业出版社,2010.10),单位炸药消耗量见表4-1,如当岩石坚固系数f为10时,单位炸药消耗量q值为0.67kg/m3以上,本次工程炸药单耗q取0.40~0.50kg/m3,准确值由现场试爆确定。

表5-1深孔爆破单位耗药量

岩石硬度系数f

0.8~2

3~4

5

6

8

10

12

14

16

单耗量q(kg/m3)

0.40

0.45

0.50

0.55

0.61

0.67

0.74

0.81

0.98

(7)单孔装药量

1)单排孔爆破或多排孔爆破的第一排孔的单孔装药量计算

Q=q.a.W1.H

Q——炮孔装药量;

kg

q——单位炸药消耗量,kg/m3;

a——孔距,m;

H——台阶高度,m;

W1——底盘抵抗线,m。

2)多排孔爆破时装药量的计算

在多排孔爆破时,从第二排起,以后各排在爆破时,因受前面各排岩石的阻力的作用,装药应有所增加。

可用下述公式计算

Q1=K.q.a.b.H

K为后排孔因岩石阻力而增加的系数,采用微差爆破时取K=1.0~1.2,采用齐发爆破时取K=1.2~1.5。

一般K=1.1~1.2,取K=1.1。

第1排的单孔装药量为Q=qaW1H,Q=25~34kg;

第2排单孔装药量Q=(1.1~1.2)abH,则Q=28~36kg。

5.1.3装药结构与填塞

单孔装药量按Q=qWHa计算,边孔在无侧向临空面时其药量增加10%~20%。

装药结构采用连续装药,起爆体的位置一般安排在离装药顶面或底面的1/3处,起爆装药的聚能穴指向主装药方向。

堵塞长度与最小抵抗线、钻孔直径和爆区环境有关。

因环境条件不许有飞石,堵塞长度取钻孔直径的30~35倍(取2.7~3.0m),堵塞材料可用泥土或钻孔时排出的岩粉,但其中不得混有大于30mm的岩块。

5.1.4起爆网路设计

起爆网路如图4-2所示,炮孔内同列装同段非电毫秒雷管,第一列装11段(460ms),第二列装13段(640ms),第三列装15段(880ms)。

炮孔装药堵塞完毕后,在孔外排之间的孔用3段(50ms)或5段(110ms)非电毫秒雷管将各炮孔导爆管联接起来,其延期时间及间隔标在图4-2中,一次爆破39孔单孔单响,单响最大药量为20kg,总药量为780kg。

孔内用高段位雷管,主要是考虑在第1个装药起爆时,孔外网路应全部起爆或已传爆过去相当的距离,从而避免先起爆的装药爆破时对孔外起爆网路的损伤。

孔外用低段位雷管,可在保证各分段爆破产生的震动不会叠加的基础上缩短整个起爆的时间,使建(构)筑物承受的震动总延时减少。

图4-2爆破网路示意图(单位:

ms)

5.2光面预裂爆破参数选择与装药量计算

5.2.1概述

(1)路基边坡比:

1:

0.75,两相邻间肩台高差12.0m,肩台宽度为2m。

(2)光面和预裂爆破概念:

光面爆破是一种控制爆破方法。

其特点是在设计开挖轮廓线上钻凿一排孔距与最小抵抗线相匹配的光爆孔,并采用不偶合装药或其他特殊的装药结构,在开挖主体的装药响炮之后,光爆孔内的装药同时起爆,从而形成一个贯穿光爆炮孔、光滑平整的开挖面。

预裂爆破也是一种控制爆破方法。

其特点是在设计开挖轮廓线上钻凿一排孔距合适的预裂孔,并采用不偶合装药或其他特殊的装药结构,在开挖主体爆破之前,同时起爆预裂炮孔内的装药,从而形成一条贯穿预裂炮孔的裂缝,如图5-3预裂爆破示意图,通过这条裂缝降低开挖主体爆破时对保留岩体的破坏。

图5-3预裂爆破示意图

(3)预裂爆破和光面爆破的优点很突出,主要表现在:

一是可以减少超挖、欠挖工程量,节省装运、回填、支护费用。

二是开挖面光滑平整,有利于后期的施工作业。

三是对保留岩体的破坏影响小,有利于边坡的稳定。

四是由于预裂缝的存在,可以放宽对开挖主体爆破规模的限制,提高工效。

预裂光面爆破的效果如何,很大程度上取决于工程中爆破参数选择和爆破控制技术。

4.2.2药孔参数设计

(1)炮孔直径d

为克服普通爆破法处理边坡的弊端,预裂孔直径的选定本着以下原则:

一是根据现场主体开挖爆破所用的穿孔机具情况,尽量使用同一型号;

二是尽量避免或减小爆破对边坡围岩的损害;

三是尽可能采用同品种工业炸药,不定制特殊药卷。

本工程主体开挖爆破穿孔设备为Φ89~100mm潜孔钻机,炮孔直径为100mm;

使用炸药为同一厂家生产的岩石乳化炸药Φ32mm的卷状药。

因此,本工程边坡预裂爆破炮孔亦采用Φ90mm潜孔钻机钻凿,其炮孔直径为100mm,即d=100mm。

(2)炮孔间距a

本工程预裂爆破的目的是使沿设计边坡面上布置的预裂炮孔之间产生贯通裂缝,以形成较平整的断裂面,并在临近主爆炮孔爆破时能阻减其产生的爆破应力波及地震效应对边坡围岩的损伤。

因此,预裂爆破炮孔间距的确定,应考虑岩石的物理力学性质,炸药爆炸性能和装药结构及其参数等。

本工程主要参照瑞典兰格弗尔斯给出的公式确定。

a=(8~12)d  (d≥60mm)

a——为预裂爆破炮孔间距,cm;

d——为预裂炮孔直径,cm;

对软岩或结构破碎的岩石,取小值,对硬岩或完整性好的岩石取大值。

根据以往工程经验并经试验检验,本工程实取预裂孔间距为100~120cm,即a=100~120cm。

(3)平均线装药量

预裂爆破只要求形成贯通预裂缝,而不是大量崩落岩石,也不能损伤围岩,因此不宜采用过大的装药量。

本工程采用二套经验公式计算,然后经试爆确定其值。

①长江科学院经验公式

q线=0.034[σ压]0.063a0.67

q线——为预裂炮孔每米装药量,kg/m;

σ压——为岩石极限抗压强度,MPa,据地质报告资料,取σ压=60MPa;

a——为预裂孔间距,a=1.0~1.2m。

那么q线=0.448~0.612kg/m。

②考虑岩性及孔网参数的经验公式

q线为预裂孔线装药量,g/m;

k——为岩石系数,坚硬岩石为0.6,中等强度岩石为0.4~0.5,软岩或较破粹岩为0.3~0.4,取k=0.5。

则q线=500g/m。

在以上计算的基础上,经考察现场试爆效果,并考虑布药方便,将预裂孔平均线装药量确定为:

一般地段q线=500g/m;

强风化岩体q线=400g/m。

(4)孔底线装药量qd线、孔口线装药量qc线

根据众多预裂爆破实践经验,要使预裂缝贯穿质量好,阻震效果佳,在预裂炮孔底部一定范围内应加大装药量。

本工程由于预裂炮孔深,底部夹制力大,所以将孔底2m范围内的线装药量增大一倍,即qd线=1000g/m。

同样,为避免预裂爆破形成爆破漏斗,减小孔口处围岩破坏,孔口堵塞段以下2米段的线装药量减小一半,即qc线=250g/m。

(5)不偶合系数m

工程实践表明,在预裂爆破炮孔直径d=(60~200)mm情况下,不偶合系数m超过2~4为宜。

m=d/de

式中,de为预裂孔装药直径,本工程预裂孔装药采用Φ32mm卷状岩石乳化炸药,所以其不偶合系数为m=3.125。

(6)预裂孔与主爆区炮孔距离

预裂爆破预裂孔首先起爆,形成预裂面,如果主爆孔离预裂孔太近,主爆孔产生的应力波可能使预裂区破损、破裂,达不到预裂目的;

如果主爆孔离预裂孔太远,主爆孔爆破后可能使主爆孔与预裂孔间的岩石不能充分破坏,会产生根底。

合理距离取决于主爆孔的破坏半径,约为1.3~1.5倍,根据应力波理论,对于石灰岩(f为8以上),2#岩石炸药,可计算主爆孔破坏半径为:

r=0.98m≈1m。

主爆孔与预裂孔距离则为1.3~1.5m。

本工程预裂孔起爆技术遵循以下原则:

一是预裂孔间的起爆时差应尽可能小,以延长相临预裂孔爆炸应力波动态应力场和爆炸气体准静应力场叠加的时间;

二预裂孔间的贯通裂缝应在相邻主爆孔爆炸前,根据工程经验,预裂孔的起爆时间必须比最近一排主爆孔的起爆时间超前100~150毫秒以上。

4.2.3装药结构

为减小预裂孔间起爆时差,保证孔内所有药卷爆轰效果,边坡预裂孔采用双导爆索并列、沿预裂孔轴向全长敷设、将Φ32mm炸药卷按设计计算值分配串绑于导爆索的装药结构,如图4-4预裂孔装药结构图。

①孔底2米长范围:

qd线=1000g/m,Qd=2kg,需Φ32mm岩石乳化炸药10卷,那么炸药首尾相接,组成连续柱状药柱,用胶布将其与并列双爆索段绑固;

②孔中间范围:

q线=500g/m,每1米孔需Φ32mm乳化炸药0.5kg,那么每卷炸药间隔20cm分别与导爆索绑捆;

③孔口堵塞段下2m长范围:

qc线=250g/m,Qc=0.5kg,需用Φ32mm乳化炸药2.5卷,将其分为5个半卷,在此段导爆索上每隔30cm捆绑上半卷药。

为方便现场装药施工,并阻减爆炸冲击波对边坡围岩孔壁的作用,在炸药卷串双导爆索一侧垫铺一条竹片,具体实施装药时,将竹片侧靠于边坡围岩侧,而使炸药卷朝向开挖侧。

图5-4预裂孔装药结构示意图

4.2.4起爆网路

本工程施工工序:

远离边坡的一侧主体岩石先进行中深孔爆破开挖,保留距边坡约6.5cm厚为缓冲层,布置3排主爆孔和一排沿边坡面的预裂孔,并同网起爆。

预裂孔孔内双导爆索支线与地面一双股并列主爆导爆索并联搭接,主爆索由2发MS4段导爆管雷管引爆。

3排主爆孔均实行孔内延期起爆,分别于孔内装入MS4、MS6、MS8段非电雷管。

4排孔的导爆管组成同一非电起爆网路一次起爆,如图4-5预裂炮孔布置及起爆网路图。

图5-5预裂炮孔布置及起爆网路示意图(单位:

m)

按照上述起爆网路实施,边坡预裂孔及邻近3排主爆孔起爆时间如表5-2所示,预裂孔排起爆时间比最近的第3排主爆孔超前145~205毫秒。

表5-2预裂孔与邻近炮孔起爆时差表

炮孔名称

起爆雷管段别

起爆时间/ms

起爆时差/ms

1排主爆孔

MS4

75±

2排主爆孔

MS6

150±

20

+(45~105)

3排主爆孔

MS8

250±

+(60~140)

边坡预裂孔

-(145~205)

图5-5是高速公路边坡预裂爆破布孔实际图,爆破效果达到预期目的。

图5-6边坡预裂爆破布孔示意图

5.3小台阶单孔延时弱松动控制爆破参数设计

5.3.1爆破方式的选择

根据该工程地质情况、爆破点周围环境和现有施工条件,另外考虑到施工进度和经济成本,该爆破方案可采用浅孔松动爆破技术。

(1)浅孔松动爆破技术:

采用多级台阶,每级台阶高度2-3m左右通过毫秒电雷管或非电导爆管延期起爆技术进行微差松动爆破(见图5-7)。

(2)优化爆破参数,优化起爆网路参数,优化装药结构,减少深孔爆破首次大块率,减小二次破碎量,确保岩石粒径装车要求。

通过调整装药结构、加长填塞,提高填塞质量等措施,减少爆破震动,控制飞石飞散,确保爆破施工安全顺利。

图5-7浅孔台阶爆破示意图

5.3.2炮孔布置

炮孔排列方式采用单排孔和多排孔相结合的布孔方式,采用多排孔时,炮孔成梅花形布置,采用小台阶式斜孔爆破法,有时亦可在台阶底部辅以倾斜炮孔,对孤石则视其情况灵活布孔。

其爆破参数如下:

5.3.3爆破参数设计

(1)炮孔直径(d)

钻孔可选用风动凿岩机等设备,孔径为36-42mm。

炸药选用2#岩石硝铵炸药或乳化炸药,药卷直径为32mm。

(2)炮孔深度(L)

L=H

L——炮孔深度,m;

注意:

超深超过设计标高约0.3m。

(3)最小抵抗线(W)

W=0.5-0.7m

(4)炮孔间距(a)

a=(1.0-1.5)W,a=0.7-1.0m。

(5)列距(b)

b=(0.8-1.0)a,b=0.7-1.0m;

(6)单孔装药量(Q)

Q=Vq

V——为单位体积,m3,V=abH;

q——为单位用药量,kg.m-3,q=0.40~0.6kg/m3。

如a取1.0m、b取1.0m、H取2.0m、q取0.5kg.m-3时,则单孔装药量Q=1.0kg。

(7)装药和填塞

1)装药:

装药前先要验孔,孔内有水时,采用乳化炸药。

每个孔装一个检查合格的电雷管。

装药结构见图5-8。

图5-8装药结构示意图

(2)填塞:

填塞长度l=W=0.5-0.7m,考虑爆破环境,填塞不小于1m,用粘土填塞。

填塞作业应保护好电雷管的引出线。

(8)试爆

因岩石的不均匀性,针对不同风化程度和裂隙发育程度的情况,应在单位装药量和最大单段药量方面作适当调整,为更好地把握药量以取得理想效果,必须进行试爆,即按设计的方案要求在现场实施爆破,以验证方案爆破参数的科学化与合理化,从而确定最佳爆破参数。

5.3.4装药结构及填塞方法

采用间隔装药法,施工中选用直径ф32mm的乳化炸药,装药时将炸药间隔捆装在竹片上,再装入炮孔,炮孔堵塞长度不少于0.8m。

5.3.5起爆网路设计

根据岩石的性质,裂隙发育程度的结构特点以及爆破规模,为了改善爆破破碎质量,降低炸药消耗,减少爆破地震效应,拟采用微差爆破方式,因每个台阶只有向上和朝向最小抵线方向两个自由面,故选用排间微差起爆方式,必要时亦可采用孔间微差起爆方式。

(1)微差间隔时间的确定

微差爆破的合理时间间隔,应以达到形成新自由面的时间最合理,破碎质量最佳,减震效果好为原则,微差间隔时间由下式确定:

W0——底盘抵抗线,f——岩石坚固系数f=6~8。

根据大量工程爆破经验和理论研究成果,同时考虑到我国现有延期雷管的分段情况,微差间隔时间通常取25~50ms。

本工程选用:

孔间微差间隔时间为50ms(MS3)。

排间微差间隔时间为110ms(MS5)。

(2)孔间微差起爆的网路设计

对重点保护目标,药包需单个起爆,即孔间微差起爆。

实施孔间微差起爆时,采用孔内延时和孔外延时相结合的方式,为了保证先爆装药不破坏后爆孔网路,采用孔外低段别导爆管雷管,孔内高段别导爆管雷管的设计,并满足下列设计。

其网路连接形式如图5-9所示。

图5-9孔间微差爆破网路示意图

5.3.6爆破施工工艺

(1)钻孔深度的控制

为了实现钻、爆、运循环作业和连续施工,钻孔深度取1.5m。

(2)钻孔精度的控制

①钻孔孔位精度:

钻孔作业应尽可能地按爆破设计的炮孔间距和排距钻孔,在实际钻孔时,由于受地形、地质等因素的影响,不能完全准确地按设计的位置钻孔,但是,为了保证爆破效果,钻孔孔位误差为±

20cm,对于一些不能按设计钻孔的炮位,应适当地前后左右移动,不能轻易地取消炮孔。

必须严格地控制孔位精度,否则,不仅爆破效果不好,还将有根坎,对下一层钻爆作业十分不利。

②钻孔角度的精度:

为了控制爆破飞石,改善爆破效果,有时设计斜孔,一般倾斜角度为75~85度,在钻孔作业时,对于倾斜的炮孔应按设计的角度钻孔,特别是同一排炮孔,倾斜角度的误差不能大于±

1.5度。

③钻孔深度的精度:

无论是一次性爆破,还是分层爆破,钻孔孔深(包括超钻)是十分重要的,深度不够,爆破效果就不好,炸不到设计的深度,使下一层钻爆作业十分困难,因此必须严格控制钻孔深度,一般误差不应大于±

10cm。

对于个别的堵孔、卡孔现象,应作好处理工作,用炮棍捣通或用高压风管吹通,否则,应重新补孔。

④)钻孔数量:

在进行明挖浅孔爆破,一般不允许大规模大吨位的爆破,但是,为了减少放炮时对周围的干扰,应尽可能地减少爆破次数,一般一次爆破的炮孔数为20~30个。

(3)钻孔技术

①钻孔平台的修建

对于分层台阶式爆破平台,应根据设计的爆破梯段,从上到下逐层修建,上层爆破后为下层平台的修建创造了条件,上一层的下平台是下一层的上平台,因此,每一层的爆破,都应对钻孔进行严格的控制,为下一层的钻爆作业创造良好的条件。

②钻孔技术

钻孔质量标准:

孔位、孔深、角度符合爆破设计的要求,误差在允许的范围内;

孔口完整、孔壁光滑、孔身直顺。

钻孔要领:

作业手应掌握钻机的操作要领,熟悉和了解设备的性能、构造原理及使用注意事项,有熟练的操作技术,并掌握不同性质岩石的钻凿规律。

钻孔技术:

孔口开好后,进入正常钻孔时,也应掌握一定的技术。

对于硬岩:

应选用高质量高硬度的钻头,送全风加全压,但转速不能过高,防止损坏岩石;

对于软岩:

应选全风加半压,慢打钻,排净碴,每进1.0~1.5m提钻孔吹一次,防止孔底积碴过多而卡孔;

对于风化破碎层:

应风量小压力轻,勤吹风勤护孔。

(4)装药与堵塞

①装药

A、每个孔口应由专人负责,记录装入各孔的炸药品种和数量,并与设计数量核对无误后,再填卡、签字或盖章,交爆破负责人。

B、装药前应与当地气象、及时掌握气象资料尽量选择晴天进行装药填塞。

C、装药工作,应在爆破技术人员指导下进行。

②)堵塞

A、堵塞开始前,应根据设计要求备足填塞材料,堆放在孔口附近。

B、装药完毕后,孔口采用沙土细料充填,顶部不留空隙。

C、堵塞时,应有专人负责检查督促堵塞质量,堵塞完毕,应进行检查。

6、材料与设备

表6.1主要材料

序号

材料名称

规格及要求

用途

1

乳化炸花

炸药

2

雷管

引爆

表6.2机具设备

名称

规格型号

单位

数量

备注

潜孔钻

90

4

风镐

03-11

3

风动凿岩机

YT-28

高压风管

7、质量控制

7.0.1质量控制标准

《公路工程质量检验评定标准》第一册(土建工程)JTGF80/1—2004

《公路路基施工技术规范》JTGF10—2006

7.0.2既不造成对路基本身的巨大扰动,同时能够保证没有飞石等四飞,造成对附近民房及道路的的威胁。

8、安全措施

复杂环境下大规模深孔控制爆破需要控制爆破振动对附近建筑物的危害,控制爆破飞石对环境的破坏,故施工时应尽可能多地采用综合技术,降低爆破振动速度,防止爆破飞石的事故发生,并利用测振仪进行安全振动监测,必要时利用摄像技术监测爆破飞石。

8.1.1岩深地区深孔爆破产生飞石因素及减少飞石的技术措施

(1)产生飞石的因素

图8-1地下溶洞(溶沟)照片

图8-2溶洞对深孔爆破的影响

深孔爆破飞石主要产生于孔口和前排。

造成孔口飞石的因素有两方面:

其一是堵塞不严,产生冲炮并带出孔口

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2