最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx

上传人:b****2 文档编号:4524184 上传时间:2023-05-03 格式:DOCX 页数:13 大小:79.86KB
下载 相关 举报
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第1页
第1页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第2页
第2页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第3页
第3页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第4页
第4页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第5页
第5页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第6页
第6页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第7页
第7页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第8页
第8页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第9页
第9页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第10页
第10页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第11页
第11页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第12页
第12页 / 共13页
最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx

《最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx(13页珍藏版)》请在冰点文库上搜索。

最新版北师大版五年级下册数学知识点汇总Word文档下载推荐.docx

如果分母只含有2或5的质因数,这个分数能化成有限小数。

如果含有2或5以外的质因数,这个分数就不能化成有限小数。

3、分数和小数比较大小:

一般把分数变成小数后比较更简便。

六、分数的加法和减法 

1、分数加减法 

(1)分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

(2)分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。

在计算过程,整数的运算律对分数同样适用。

(3)同分母分数加、减法 

同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

(4)异分母分数加、减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;

或者先根据需要进行部分通分。

根据算式特点来选择方法。

第二单元:

《长方体

(一)》

长方体

(一) 

长方体的认识 

知识点:

1、认识长方体、正方体,了解各部分的名称。

(1) 

表面平平的部分称为面;

两面相交便形成了一条棱;

而三条棱又交于一点,这个点叫作顶点。

(2) 

左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。

(3) 

长方体有12条棱,这12条棱中有4条长、4条宽和4条高。

正方体的12条棱的长度都相等。

(4)、正方体是特殊的长方体。

因为正方体可以看成是长、宽、高都相等的长方体。

(5)、长方体的棱长总和=(长+宽+高)×

4或者是长×

4+宽×

4+高×

长方体的宽=棱长总和÷

4-长-高 

长方体的长=棱长总和÷

4-宽-高 

长方体的高=棱长总和÷

4-宽-长 

正方体的棱长总和=棱长×

12 

正方体的棱长=棱长总和÷

12

2.展开与折叠 

正方体展开共11种 

1—4—1 

型 

6个 

2—3—1 

3个2—2—2 

1个 

楼梯形 

3-3 

(1)田字型与凹字型的全错。

(2)正方体展开至少和最多都只剪开7条棱。

3、长方体的表面积 

(1)、表面积的意义:

是指六个面的面积之和。

(2)、长方体和正方体表面积的计算方法:

(3)、长方体的表面积(6个面)=长×

宽×

+长×

高×

+宽×

(上下面) 

(前后面) 

(左右面) 

S长=(长×

宽+长×

高+宽×

高)×

(4)、正方体的表面积(6个面)=棱长×

棱长×

S正=棱长×

 

(一个面的面积) 

4、露在外面的面 

(1)、在观察中,通过不同的观察策略进行观察。

如:

:

一种是看每个纸箱露在外面的面,再加到一起;

另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。

(2)、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。

(3)、求露在外面的面的面积=棱长×

露在外面的面的个数。

(一个面的面积)

第三单元《分数乘法》

分数乘法

(一)知识点:

(1)理解分数乘整数的意义:

分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。

(2)分数乘整数的计算方法:

分母不变,分子和整数相乘的积作分子。

能约分的要约成最简分数。

(3)计算时,应该先约分再计算。

分数乘法

(二) 

知识点 

(1)、整数乘分数的意义:

求一个数的几分之几是多少。

(2)、理解打折的含义。

例如:

九折,是指现价是原价的十分之九。

补充知识点:

1、打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。

现价=原价×

折扣 

原价=现价÷

折扣=现价÷

原价 

2、买一赠一打几折:

出一个的钱拿两个货品 

即 

1除以2等于零点五 

五折 

买三赠一打几折:

出三个的钱拿四个货品 

3除以4等于零点七五 

七五折 

分数乘法(三) 

1、分数乘分数的计算方法:

分子相乘做分子,分母相乘做分母,能约分的可以先约分。

(结果是最简分数。

2、比较分数相乘的积与每一个乘数的大小:

真分数相乘积小于任何一个乘数;

真分数与假分数相乘积大于真分数小于假分数。

3、比较分数相乘的积与每一个乘数的大小。

乘数乘以<

1的数,积<

乘数;

乘数乘以=1的数,积=乘数;

乘数乘以>

1的数,积>

4、求一个数的几分之几是多少,用乘法。

(即已知整体和部分量相对应的分率,求部分量,用乘法) 

5、倒数、 

(1)、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。

倒数是对两个数来说的,并不是孤立存在的。

(2)、当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。

(3)、1的倒数仍是1;

0没有倒数。

0没有倒数,是因为0不能作除数。

(4)、求一个数的倒数的方法:

把这个数的分子、分母调换位置;

其中整数可以看成分母是1的分数。

第四单元:

《长方体

(二)》

4.1体积与容积知识点:

1、体积与容积的概念:

体积:

物体所占空间的大小叫作物体的体积。

(从外部测量) 

容积:

容器所能容纳入体的体积叫做物体的容积。

(从内部测量) 

①同一个容器,体积大于容积;

当容器壁很薄时,容积近等于体积。

如果容器壁忽略不计时,容积等于体积。

②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 

4.2体积单位 

知识点:

1、认识体积、容积单位 

常用的体积单位:

立方米(3米)、立方分米(3分米)、立方厘米(3厘米) 

常用的容积单位:

升、毫升、1升=13分米、1毫升=13厘米 

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:

①手指头、苹果、火柴盒体积较小,可用3厘米作单位 

②西瓜、粉笔盒体积稍大,可以用3分米作单位 

③矿泉水瓶、墨水瓶可以用毫升作单位 

④热水瓶等较大盛液体容器、冰箱可用生升作单位 

⑤我们饮用的自来水用“立方米”作单位。

4.3长方体的体积 

1、长方体、正方体体积的计算方法 

①长方体的体积=长×

高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh 

②正方体的体积=棱长*棱长*棱长,如果棱长用a表示,体积可表示为V=3a=a×

长方体(正方体)的体积=底面积×

高 

V=Sh 

长方体的体积=横截面面积×

长 

2、能利用长方体(正方体)的体积及其他两个条件求出问题。

长方体的高=体积÷

长÷

宽 

长=体积÷

高÷

宽=体积÷

计算体积时,单位一定要统一;

表面积与体积表示的意义不一样,单位不同,无法比较大小 

4.4体积单位的换算 

认识体积、容积单位。

常用的体积单位有:

立方厘米(cm³

)、立方分米(dm³

、立方米(m³

)。

常用的容积单位有:

升(L)、毫升(m 

L) 

1、体积、容积单位之间的进率:

相邻体积、容积单位间进率为1000 

1米³

=1000分米³

1分米³

=1000厘米³

1升=1分米³

1毫升=1厘米³

1升=1000毫升 

2、体积、容积单位之间的换算方法:

体积、容积单位之间的换算,由高级单位化成低级单位乘进率,

由低级单位化成高级单位除以进率 

4.5有趣的测量 

1不规则物体体积的测量方法:

一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)

在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积2不规则物体体积的计算方法:

现在液体体积减去原来液体体积

第五单元:

《分数除法》

分数除法

(一)知识点:

1、分数除以整数的意义及计算方法。

分数除以整数,就是求这个数的几分之几是多少。

分数除以整数(0除外)等于乘这个数的倒数。

分数除法

(二)知识点:

1、一个数除以分数的意义和基本算理:

一个数除以分数的意义与整数除法的意义相同;

一个数除以分数等于乘这个数的倒数。

2、一个数除以分数的计算方法:

除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。

除数小于1,商大于被除数;

除数等于1。

商等于被除数;

除数大于1,商小于被除数。

分数除法(三) 

1、列方程“求一个数的几分之几是多少”的方法:

(1)、解方程法:

设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。

(2)、算术方法:

用部分量除以它所占整体的几分之几 

(对应量÷

对应分率=标准量) 

2、判断单位“1”:

①一般来说,某个数的几分之几,“某个数”就是单位“1” 

②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”

③谁是谁的几分之几,“是”字后面的数量就是单位“1” 

倒数 

1、理解倒数的意义:

如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。

2、求倒数的方法:

把这个数的分子和分母调换位置。

3、1的倒数仍是1;

0没有倒数,是因为在分数中,0不能做分母。

第六单元确定位置

确定位置

(一)知识点

1、 

认识方向与距离对确定位置的作用。

2、 

能根据方向和距离确定物体的位置。

3、 

能描述简单的路线图。

确定位置

(二)知识点 

了解确定物体位置的方法。

能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离)

1数对:

一般由两个数组成。

作用:

数对可以表示物体的位置,也可以确定物体的位置。

2行和列的意义:

竖排叫做列,横排叫做行。

3数对表示位置的方法:

先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)

(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。

数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)

4两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

(2,4)和(2,7)都在第2列上。

5两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

(3,6)和(1,6)都在第6行上。

6图形平移变化规律:

(1)图形向左平移,行数不变,列数减去平移的格数。

图形向右平移,行数不变,列数加上平移的格数。

图形向上平移,列数不变,行数加上平移的格数。

图形向下平移,列数不变,行数减去平移的格数。

第七单元:

《用方程解决问题》

1、小数乘整数的意义——求几个相同加数的和的简便运算。

如1:

3χ表示χ的3倍是多少或3个χ的和的简便运算。

如2:

1.5χ表示χ的1.5倍是多少或1.5个χ的和的简便运算。

在乘法里:

一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。

(这叫做积不变性质)

在除法里:

被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。

(这叫做商不变性质) 

4. 

乘法分配律:

(b 

±

c) 

5、在含有字母的式子里,字母中间的乘号可以简记“·

”,也可以省略不写。

(注意:

加号、减号、除号以及数与数之间的乘号不能省略。

字母与数字相乘简写时,数字写在字母前面。

6、a×

a可以写作a·

a或a²

,a²

读作a的平方或a的二次方。

2a表示a+a 

7、方程:

含有未知数的等式称为方程。

(所有的方程都是等式,但等式不一定都是等式。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

(方程的解是一个数;

解方程是一个计算过程。

8、解方程原理:

天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

9、解方程的方法:

方法一:

利用天平平衡原理(即等式的性质)解方程;

方法二:

利用加、减、乘、除运算数量关系解方程。

10、加、减、乘、除运算数量关系式:

加法:

和=加数+加数 

一个加数=和-两一个加数 

减法:

差=被减数-减数 

被减数=差+减数 

减数=被减数-差 

乘法:

积=因数×

因数 

一个因数=积÷

另一个因数 

除法:

商=被除数÷

除数 

被除数=商×

除数=被除数÷

11、常用数量关系式:

路程=速度×

时间 

速度=路程÷

时间=路程÷

速度

总价=单价×

数量 

单价=总价÷

数量=总价÷

单价 

总产量=单产量×

单产量=总产量÷

数量=总产量÷

单价

被减数-减数=差 

减数=被减数-差 

被减数=差+减数 

(大数-小数=相差数 

大数-相差数=小数 

小数+相差数=大数 

×

因数=积 

一个因数=积÷

被除数÷

除数=商 

除数=被除数÷

商 

被除数=商×

(一倍量×

倍数=几倍量 

几倍量÷

倍数=一倍量 

一倍量=倍数 

工作总量=工作效率×

工作时间 

工作效率=工作总量÷

工作时间=工作总量÷

工作效率 

12、相遇问题:

特点:

必须是同时的 

可根据不同的行程进行分析。

路程=速度和×

相遇时间 

速度和=路程÷

相遇时间=路程÷

速度和 

速度1=路程÷

相遇时间-速度2 

13、列方程解应用题的一般步骤:

1、弄清题意,找出未知数,并用x表示。

(解 

设) 

2、找出应用题中数量之间的相等关系,列方程。

(找关系) 

3、解方程。

(列) 

4、检验,写出答案。

(验)

第八单元:

《数据的表示和分析》

1、条形统计图 

优点:

很容易看出各种数量的多少。

画条形统计图时,直条的宽窄必须相同。

取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

2、折线统计图 

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

3、扇形统计图 

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

很清楚地表示出各部分同总数之间的关系。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2