中考数学综合题专题复习【几何中的动点问题】专题解析.doc

上传人:wj 文档编号:4581457 上传时间:2023-05-07 格式:DOC 页数:15 大小:1.09MB
下载 相关 举报
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第1页
第1页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第2页
第2页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第3页
第3页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第4页
第4页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第5页
第5页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第6页
第6页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第7页
第7页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第8页
第8页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第9页
第9页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第10页
第10页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第11页
第11页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第12页
第12页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第13页
第13页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第14页
第14页 / 共15页
中考数学综合题专题复习【几何中的动点问题】专题解析.doc_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

中考数学综合题专题复习【几何中的动点问题】专题解析.doc

《中考数学综合题专题复习【几何中的动点问题】专题解析.doc》由会员分享,可在线阅读,更多相关《中考数学综合题专题复习【几何中的动点问题】专题解析.doc(15页珍藏版)》请在冰点文库上搜索。

中考数学综合题专题复习【几何中的动点问题】专题解析.doc

数学专题之【几何综合题】精品解析

———————————————————————————————————————

中考数学综合题专题复习【几何中的动点问题】专题解析

【真题精讲】

【例1】如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).

(1)当时,求的值;

(2)试探究:

为何值时,为等腰三角形.

【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。

对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。

但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。

所以当题中设定MN//AB时,就变成了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【解析】

解:

(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.

∵,.

∴.(根据第一讲我们说梯形内辅助线的常用做法,成功将MN放在三角形内,将动态问题转化成平行时候的静态问题)

∴.(这个比例关系就是将静态与动态联系起来的关键)

∴.解得.

【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。

在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。

具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解

【解析】

(2)分三种情况讨论:

①当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质)

∵,

∴,

∴,

解得.

②当时,如图③,过作于H.

则,

∴.

∴.

③当时,

则.

综上所述,当、或时,为等腰三角形.

【例2】在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.

(2)如果AB≠AC,如图②,且点D在线段BC上运动.

(1)中结论是否成立,为什么?

(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,,CD=,求线段CP的长.(用含的式子表示)

【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。

由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。

【解析】:

(1)结论:

CF与BD位置关系是垂直;

证明如下:

AB=AC,∠ACB=45º,∴∠ABC=45º.

由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90º,

∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.

∴∠BCF=∠ACB+∠ACF=90º.即CF⊥BD.

【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解。

(2)CF⊥BD.

(1)中结论成立.

理由是:

过点A作AG⊥AC交BC于点G,∴AC=AG

可证:

△GAD≌△CAF∴∠ACF=∠AGD=45º

∠BCF=∠ACB+∠ACF=90º.即CF⊥BD

【思路分析3】这一问有点棘手,D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X。

分类讨论之后利用相似三角形的比例关系即可求出CP.

(3)过点A作AQ⊥BC交CB的延长线于点Q,

①点D在线段BC上运动时,

∵∠BCA=45º,可求出AQ=CQ=4.∴DQ=4-x,

易证△AQD∽△DCP,∴,∴,

②点D在线段BC延长线上运动时,

∵∠BCA=45º,可求出AQ=CQ=4,∴DQ=4+x.

过A作交CB延长线于点G,则.CF⊥BD,

△AQD∽△DCP,∴,∴,

【例3】已知如图,在梯形中,点是的中点,是等边三角形.

(1)求证:

梯形是等腰梯形;

(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;

(3)在

(2)中,当取最小值时,判断的形状,并说明理由.

A

D

C

B

P

M

Q

60°

【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。

第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。

第二问和例1一样是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的。

题目给定∠MPQ=60°,这个度数的意义在哪里?

其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢?

当然是利用角度咯.于是就有了思路.

【解析】

(1)证明:

∵是等边三角形

∵是中点

∴梯形是等腰梯形.

(2)解:

在等边中,

∴(这个角度传递非常重要,大家要仔细揣摩)

∵∴

∴∴(设元以后得出比例关系,轻松化成二次函数的样子)

【思路分析2】第三问的条件又回归了当动点静止时的问题。

由第二问所得的二次函数,很轻易就可以求出当X取对称轴的值时Y有最小值。

接下来就变成了“给定PC=2,求△PQC形状”的问题了。

由已知的BC=4,自然看出P是中点,于是问题轻松求解。

(3)解:

为直角三角形

∴当取最小值时,

∴是的中点,而

以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。

如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。

当动的不是点,而是一些具体的图形时,思路是不是一样呢?

接下来我们看另外两道题.

【例4】已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接.

(1)直接写出线段与的数量关系;

(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,.

你在

(1)中得到的结论是否发生变化?

写出你的猜想并加以证明.

(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问

(1)中的结论是否仍然成立?

(不要求证明)

【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。

从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。

第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。

第二问将△BEF旋转45°之后,很多考生就想不到思路了。

事实上,本题的核心条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。

连接AG之后,抛开其他条件,单看G点所在的四边形ADFE,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G点做AD,EF的垂线。

于是两个全等的三角形出现了。

(1)

(2)

(1)中结论没有发生变化,即.

证明:

连接,过点作于,与的延长线交于点.

在与中,

∵,

∴.

∴.

在与中,

∵,

∴.

在矩形中,

在与中,

∵,

∴.

∴.

【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。

但是我们不应该止步于此。

将这道题放在动态问题专题中也是出于此原因,如果△BEF任意旋转,哪些量在变化,哪些量不变呢?

如果题目要求证明,应该如何思考。

建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:

在△BEF的旋转过程中,始终不变的依然是G点是FD的中点。

可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF这一条件将全等过渡。

要想办法证明三角形ECH是一个等腰直角三角形,就需要证明三角形EBC和三角形CGH全等,利用角度变换关系就可以得证了。

(3)

(1)中的结论仍然成立.

【例5】已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.

(1)当=1时,CF=______cm,

(2)当=2时,求sin∠DAB′的值;

(3)当=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).

C

A

D

B

【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。

这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。

同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。

一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。

尤其注意的是,本题中给定的比例都是有两重情况的,E在BC上和E在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。

【解析】

(1)CF=6cm;(延长之后一眼看出,EAZY)

(2)①如图1,当点E在BC上时,延长AB′交DC于点M,

图1

∵AB∥CF,∴△ABE∽△FCE,∴.

∵=2,∴CF=3.

∵AB∥CF,∴∠BAE=∠F.

又∠BAE=∠B′AE,∴∠B′AE=∠F.∴MA=MF.

设MA=MF=k,则MC=k-3,DM=9-k.

在Rt△ADM中,由勾股定理得:

k2=(9-k)2+62,解得k=MA=.∴DM=.(设元求解是这类题型中比较重要的方法)

图2

∴sin∠DAB′=;

②如图2,当点E在BC延长线上时,延长AD交B′E于点N,

同①可得NA=NE.

设NA=NE=m,则B′N=12-m.

在Rt△AB′N中,由勾股定理,得

m2=(12-m)2+62,解得m=AN=.∴B′N=.

∴sin∠DAB′=.

(3)①当点E在BC上时,y=;

(所求△AB′E的面积即为△ABE的面积,再由相似表示出边长)

②当点E在BC延长线上时,y=.

【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。

只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:

第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。

针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。

针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。

如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。

第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

【发散思考】

【思考1】已知:

如图

(1),射线射线,是它们的公垂线,点、分别在、上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合),在运动过程中始终保持,且.

(1)求证:

∽;

(2)如图

(2),当点为边的中点时,求证:

(3)设,请探究:

的周长是否与值有关?

若有关,请用含有的代数式表示的周长;若无关,请说明理由.

【思路分析】本题动点较多,并且是以和的形式给出长度。

思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。

第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。

【思考2】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若<∠PBC<180°,

且∠PBC平分线上的一点D满足DB=DA,

(1)当BP与BA重合时(如图1),∠BPD=°;

(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;

(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.

【思路分析】本题中,和动点P相关的动量有∠PBC,以及D点的位置,但是不动的量就是BD是平分线并且DB=DA,从这几条出发,可以利用角度相等来找出相似、全等三角形。

事实上,P点的轨迹就是以B为圆心,BA为半径的一个圆,那D点是什么呢?

留给大家思考一下~

【思考3】如图:

已知,四边形ABCD中,AD//BC,DC⊥BC,已知AB=5,BC=6,cosB=.

点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.

(1)当BO=AD时,求BP的长;

(2)点O运动的过程中,是否存在BP=MN的情况?

若存在,请求出当BO为多长时BP=MN;若不存在,请说明理由;

A

B

C

D

O

P

M

N

A

B

C

D

(备用图)

(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围。

【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。

在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。

本题第一问比较简单,等腰梯形中的计算问题。

第二问则需要用设元的方法表示出MN和BP,从而讨论他们的数量关系。

第三问的猜想一定要记得分类分情况讨论。

【思考4】在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)

(1)在图1中画图探究:

①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;

②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.

(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.

【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。

事实上就在于如何把握这个旋转90°的条件。

旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。

第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。

建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。

【思考题解析】

【思考1解析】

(1)证明:

∵,∴.∴.

又∵,∴.

∴.∴∽.

第25题

(2)证明:

如图,过点作,交于点,

∵是的中点,容易证明.

在中,∵,∴.

∴.

∴.

(3)解:

的周长,.

设,则.

∵,∴.即.

∴.

(1)知∽,

∴.

∴的周长的周长.

∴的周长与值无关.

【思考2答案】

解:

(1)∠BPD=30°;

(2)如图8,连结CD.

解一:

∵点D在∠PBC的平分线上,

∴∠1=∠2.

∵△ABC是等边三角形,

图8

∴BA=BC=AC,∠ACB=60°.

∵BP=BA,

∴BP=BC.

∵BD=BD,

∴△PBD≌△CBD.

∴∠BPD=∠3.-----------------3分

∵DB=DA,BC=AC,CD=CD,

∴△BCD≌△ACD.

∴.

∴∠BPD=30°.

解二:

∵△ABC是等边三角形,

∴BA=BC=AC.

∵DB=DA,

∴CD垂直平分AB.

∴.

∵BP=BA,

∴BP=BC.

∵点D在∠PBC的平分线上,

∴△PBD与△CBD关于BD所在直线对称.

∴∠BPD=∠3.

∴∠BPD=30°.

(3)∠BPD=30°或150°.

图形见图9、图10.

图9

图10

【思考3解析】

解:

(1)过点A作AE⊥BC,在Rt△ABE中,由AB=5,cosB=得BE=3.

∵CD⊥BC,AD//BC,BC=6,

∴AD=EC=BC-BE=3.

当BO=AD=3时,在⊙O中,过点O作OH⊥AB,则BH=HP

∵,∴BH=.

∴BP=.

(2)不存在BP=MN的情况-

假设BP=MN成立,

∵BP和MN为⊙O的弦,则必有∠BOP=∠DOC.

过P作PQ⊥BC,过点O作OH⊥AB,

∵CD⊥BC,则有△PQO∽△DOC-

设BO=x,则PO=x,由,得BH=,

∴BP=2BH=.

∴BQ=BP×cosB=,PQ=.

∴OQ=.

∵△PQO∽△DOC,∴即,得.

当时,BP==>5=AB,与点P应在边AB上不符,

∴不存在BP=MN的情况.

(3)情况一:

⊙O与⊙C相外切,此时,0<CN<6;------7分

情况二:

⊙O与⊙C相内切,此时,0<CN≤.-------8分

A

B

C

D

O

P

M

N

Q

H

【思考4解析】

解:

(1)①直线与直线的位置关系为互相垂直.

证明:

如图1,设直线与直线的交点为.

∵线段分别绕点逆时针旋转90°依次得到线段,

F

D

C

B

A

E

图1

G2

G1

P1

H

P2

∴.

∵,,

∴.

∴.

∴.

∵,

∴,

∴.

∴.

∴.

∴.

②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.

(2)∵四边形是平行四边形,

∴.

∵,

∴.

可得.

(1)可得四边形为正方形.

D

G1

P1

H

C

B

A

E

F

图2

∴.

①如图2,当点在线段的延长线上时,

∵,

∴.

∴.

F

G1

P1

C

A

B

E

D

H

图3

②如图3,当点在线段上(不与两点重合)时,

∵,

∴.

∴.

③当点与点重合时,即时,不存在.

综上所述,与之间的函数关系式及自变量的取值范围是或.

标是.

15

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2