水污染控制工程复习资料.doc

上传人:wj 文档编号:4872253 上传时间:2023-05-07 格式:DOC 页数:35 大小:700KB
下载 相关 举报
水污染控制工程复习资料.doc_第1页
第1页 / 共35页
水污染控制工程复习资料.doc_第2页
第2页 / 共35页
水污染控制工程复习资料.doc_第3页
第3页 / 共35页
水污染控制工程复习资料.doc_第4页
第4页 / 共35页
水污染控制工程复习资料.doc_第5页
第5页 / 共35页
水污染控制工程复习资料.doc_第6页
第6页 / 共35页
水污染控制工程复习资料.doc_第7页
第7页 / 共35页
水污染控制工程复习资料.doc_第8页
第8页 / 共35页
水污染控制工程复习资料.doc_第9页
第9页 / 共35页
水污染控制工程复习资料.doc_第10页
第10页 / 共35页
水污染控制工程复习资料.doc_第11页
第11页 / 共35页
水污染控制工程复习资料.doc_第12页
第12页 / 共35页
水污染控制工程复习资料.doc_第13页
第13页 / 共35页
水污染控制工程复习资料.doc_第14页
第14页 / 共35页
水污染控制工程复习资料.doc_第15页
第15页 / 共35页
水污染控制工程复习资料.doc_第16页
第16页 / 共35页
水污染控制工程复习资料.doc_第17页
第17页 / 共35页
水污染控制工程复习资料.doc_第18页
第18页 / 共35页
水污染控制工程复习资料.doc_第19页
第19页 / 共35页
水污染控制工程复习资料.doc_第20页
第20页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

水污染控制工程复习资料.doc

《水污染控制工程复习资料.doc》由会员分享,可在线阅读,更多相关《水污染控制工程复习资料.doc(35页珍藏版)》请在冰点文库上搜索。

水污染控制工程复习资料.doc

第十章污水的物理处理

第一节污水预处理

一、格栅

组成:

格栅由一组(或多组)相平行的金属栅条与框架组成,倾斜安装在进水的渠道,或进水泵站集水井的进口处,以拦截污水中粗大的悬浮物及杂质。

作用:

去除可能堵塞水泵机组及管道阀门的较粗大悬浮物,并保证后续处理设施能正常运行。

选用栅条间距的原则:

不堵塞水泵和水处理厂、站的处理设备。

格栅的清渣方法:

人工清除(与水平面倾角:

45º~60º),设计面积应采用较大的安全系数,一般不小于进水渠道面积的2倍,以免清渣过于频繁。

机械清除(与水平面倾角:

60º~70º)过水面积一般应不小于进水管渠的有效面积的1.2倍。

二、调节池(★)

(一)调节池的作用

1、水量调节

1)线内调节:

进水用重力流,出水用泵提升。

2)线外调节:

q高,进池;q低,出池

2、水质调节

1)利用外加动力而进行的强制调节:

设备较简单,效果较好,但运行费用高。

2)利用差流方式:

基本没有运行费,但设备结构较复杂。

(二)调节池的形式结构

1)方池:

主要用来调节水量

2)对角线调节池:

只调节水质,不能调节水量,对角线开槽。

3)折流式调节池

三、调节池的设计(★★)

1、废水经过一定调节时间后平均浓度为:

c=∑qiciti/∑qiti

2、调节池体积

V=∑qiti难点:

∑ti的确定

第二节沉淀的基础理论

一、概述

沉淀法是利用水中悬浮颗粒的可沉降性能,在重力作用下产生下沉作用,以达到固液分离的一种过程。

沉淀处理工艺的四种用法:

1.沉砂池:

用以去除污水中的无机易沉物。

2.初次沉淀池:

较经济地去除,减轻后续生物处理构筑物的有机负荷。

3.二次沉淀池:

用来分离生物处理工艺中产生的生物膜、活性污泥等,使处理后的水得以澄清。

4.污泥浓缩池:

将来自初沉池及二沉池的污泥进一步浓缩,以减小体积,降低后续构筑物的尺寸及处理费用等。

沉淀可分成四种类型(★★)

1.自由沉淀:

悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀,颗粒沉淀轨迹呈直线。

沉淀过程中,颗粒的物理性质不变。

发生在沉砂池中。

2.絮凝沉淀:

悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。

沉淀过程中,颗粒的质量、形状、沉速是变化的。

化学絮凝沉淀属于这种类型。

3.区域沉淀或成层沉淀:

悬浮颗粒浓度较高;颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。

二次沉淀池与污泥浓缩池中发生。

4.压缩沉淀:

悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。

二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。

二、沉淀的基本理论

(一)自由沉淀及其理论基础

球状颗粒自由沉淀的沉速公式(★):

斯托克斯定律(★★)

在层流状态下,λ=24/Re,带入式中,整理得自由颗粒在静水中的运动公式

由上式可知,颗粒沉降速度us与下述因素有关:

us正比于颗粒与水的密度差(ρs-ρL);

us正比于d²;us反比于μ(μ取决于水温和水质)

(二)絮凝沉淀

颗粒碰撞→絮状体→尺寸增大→us增大沉降特性由絮凝沉降实验确定

(三)成层沉淀和压缩沉淀

在沉淀初期,沿沉淀深度从上至下依次存在清水层、受阻沉淀层、过渡层和压缩层。

后期,分为清水层和压缩层。

三、沉淀池的工作原理

理想沉淀池分为四部分:

进口区域、沉淀区域、出口区域、污泥区域

理想沉淀池的几个假定(★★):

1.沉淀区过水断面上各点的水流速度均相同,水平流速为v;

2.悬浮颗粒在沉淀区等速下沉,下沉速度为u;

3.在沉淀池的进口区域,水流中的悬浮颗粒均匀分布在整个过水断面上;

4.颗粒一经沉到池底,即认为已被去除。

颗粒完全去除颗粒不能完全去除

最小沉降速度(u0)

反映沉淀池效率的参数,一般称为沉淀池的表面负荷率。

沉淀池按水流方向分(★):

平流式、竖流式、辐流式沉淀池

(1)平流式沉淀池

污水从池的一端流入,水平方向流过池子,从池的另一端流出。

(溢流堰)

(2)竖流式沉淀池(絮凝沉淀)

中心管、喇叭口、反射板(降低流速、改变水流方向)

(3)普通辐流式沉淀池(中间进水,周边出水)

向心辐流式沉淀池(周边进水,周边出水)

(4)斜板(管)沉淀池

异向流、同向流、侧向流

第三节沉砂池

工作原理:

以重力分离或离心分离为基础,即控制进入沉砂池的污水流速,使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走。

形式:

平流式沉砂池、曝气沉砂池、旋流式沉砂池等。

一、平流式沉砂池

平流式沉砂池是一种最传统的沉砂池,它构造简单,工作稳定易于排砂。

平流式沉砂池的系统参数:

(1)最大流速0.3m/s,最小流速0.15m/s;

(2)最大流量时,污水停留时间30-60s;

(3)有效水深不大于1.2m,一般0.25-1.0m,池宽不小于0.6m;

(4)池底坡度一般为0.01-0.02,设沉砂设备时根据沉砂设备要求考虑池底形状。

浮上法

浮上法:

利用水的浮力作用,使不溶于水的污染物浮到水面上,再通过机械刮除分离的水处理方法。

1)自然浮上法

粒径较粗且密度接近或小于水的强疏水性物质,可以依靠浮力的作用自然上浮于水分离,这种方法称为自然浮上法。

2)气浮法

弱疏水性悬浮固体或乳化油,可利用高度分散的微小气泡为载体去黏附,并使其随气泡浮升到水面得以分离,这种方法称为气泡浮升法,简称气浮。

破乳:

破坏液滴界面上的稳定薄膜,使油、水得以分离。

方法:

投加换型乳化剂:

搅拌、振荡、转动:

过滤:

改变温度:

浮上法基本条件(★):

必须向水中提供足够量的细微气泡;

必须使污水中的污染物质能形成悬浮状态;

必须使气泡与悬浮的物质产生粘附作用。

按产生微细气泡的方法分类:

电解气浮法、

分散空气法(微孔曝气浮上法、剪切气泡浮上法)、

溶解空气法(真空浮上法、加压溶气浮上法)

加压溶气浮上法的基本原理(★).

先在加压条件下,将空气溶于水中并达到饱和状态,然后突然将操作压力降至常压,使压溶于水中的空气处于过饱和状态,并以微小气泡型式释放出过饱和部分的空气量。

加压溶气气浮流程(★)

1、全溶气流程

溶气量大,气浮池体积较小(可节省基建投资)

压力泵功率和溶气罐容积较大,故动力消耗较大。

2、部分溶气流程

所需的压力泵功率和溶气罐容积较小,故设备紧凑、动力消耗低,但溶气系统提供的空气量也少。

3、回流溶气流程

溶气水量少且水质较优、动力消耗省、溶气效率高、混凝过程不受废水输送设备影响、形成的絮体性能较好。

但气浮池的容积比前两种流程大

压力溶气气浮法系统组成:

压力溶气系统、空气释放系统、气浮池

第十一章废水生物处理的基本概念和生化反应动力学基础

第一节废水的好氧生物处理和厌氧生物处理

一、微生物的新陈代谢

新陈代谢:

微生物不断从外界环境中摄取营养物质,通过生物酶催化的复杂生化反应,在体内不断进行物质转化和交换的过程。

分解代谢:

分解复杂营养物质,降解高能化合物,获得能量。

合成代谢:

通过一系列的生化反应,将营养物质转化为复杂的细胞成分,机体制造自身。

底物降解:

污水中可被微生物通过酶的催化作用而进行生物化学变化的物质称为底物或基质。

可生物降解有机物量:

可通过生物的降解转化的量。

可生物降解底物量:

包括有机的和无机的可生物利用

二、微生物的呼吸类型

1、好氧呼吸:

---有分子氧参与的情况下进行的生物氧化,反应的最终受氢体是分子氧。

2、厌氧呼吸

---无分子氧的情况下进行的生物氧化。

1)发酵:

最终受氢体是有机物分解的中间产物

2)无氧呼吸:

最终受氢体是一些无机氧化物

三、废水的好氧生物处理(★)

好氧生物处理:

在有分子氧存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。

有机物分解的最终产物:

CO2、H2O

注意:

保持溶解氧、营养物和微生物三者的平衡。

适用中低浓度有机物废水:

<500mg/L

四、废水的厌氧生物处理(★)

厌氧生物处理:

在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。

适用有机污泥和高浓度有机污水(BOD>2000mg/L)

第二节微生物的生长规律和生长环境

一、微生物的生长环境

微生物的营养:

水、碳源、氮源、无机元素

好氧微生物BOD5∶N∶P=100∶5∶1

厌氧微生物BOD5∶N∶P=200∶5∶1

二、微生物的生长规律(生长曲线表示)

生长期(★)

停滞期、对数期、静止期、衰亡期

当有机物多时,以有机物为食料的细菌数量较多,当细菌很多时,出现以细菌为食料的原生动物,而后出现以细菌和原生动物为食料的后生动物。

第三节反应速度和反应级数

在生化反应中,反应速度是指单位时间里底物的减少量、最终产物的增加量或细胞的增加量。

反应级数(★)

反应速度与一种反应物A的浓度ρA成正比时,称这种反应对这种反应物是一级反应。

反应速度与二种反应物A、B的浓度ρA、ρB成正比时,或与一种反应物A的浓度ρA的平方ρA2成正比时,称这种反应为二级反应。

反应速率不受反应底物浓度影响时,称为零级反应。

n=0零级反应,v==k→[S]=[S0]-kt

n=1一级反应,v==k[S]→lg[S]=lg[S0]–t/2.3

第四节米歇里斯-门坦方程式

一、中间产物学说(★)

中间产物学说:

根据此学说,酶促反应分两步进行。

第一步,酶(E)与底物(S)作用形成中间产物(ES),此中间产物被看作稳定的络合物;第二步,络合物被进一步分解为产物(P)和游离态的酶(E)。

二、米氏方程式(★★)

式中:

v——酶促反应速度;vmax——最大酶反应速度;

ρS——底物浓度;Km——米氏常数。

(1)当ρS>>Km时,Km+ρS≈ρS,v=vmax,呈零级反应,酶促反应速度达到最大值。

(2)当ρS<

1、物理意义

(1)Km值只与酶的性质有关,而与酶浓度无关。

(2)如果一个酶有几种底物,则对每一种底物,各有一个特定的Km

(3)同一种酶有几种底物,就有几个Km值,Km值最小的底物,称为该酶的最适合底物。

第十二章活性污泥法

第一节基本概念

一、活性污泥法(★)

采用人工曝气的手段,使栖息有大量微生物群的絮状泥粒(即活性污泥)均匀分散并悬浮于反应器(即曝气池)中,与废水充分接触;在有溶解氧的条件下,微生物利用废水中的有机物,进行同化合成和异化分解的代谢活动。

二、活性污泥法的基本流程(★)

活性污泥系统:

以曝气池和二沉池为主体组成的整体

回流污泥的作用:

使曝气池内保持一定的微生物浓度(以悬浮固体浓度为表征)。

曝气过程:

供氧;搅拌,防沉淀。

第二节活性污泥

一、活性污泥的性质和组成

由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。

1、基本性质

颜色:

黄褐色味道:

土腥味状态:

似矾花絮绒颗粒等

2、活性污泥的组成

(1)有机物:

a:

生物:

细菌、放线菌、真菌等类群。

b:

有机悬浮物颗粒

(2)无机物:

无机盐等

二、活性污泥的增长规律

1、营养丰富→对数增长阶段

2、有机物基本被去除→减速增长阶段(静止期)污泥活性大,沉降性能好。

3、基本无营养物质→内源呼吸阶段(衰亡期)污泥质地紧密,无机物高,沉降性能好。

活性污泥一般要求:

(1)活性大,吸附能力强;

(2)沉降性能好。

三、活性污泥对废水净化作用(★)

1、吸附阶段

比表面积大,部分微生物为多糖类黏性物质。

第一阶段:

有机物吸附在污泥表面

2、微生物的代谢(稳定阶段)

第二阶段:

蛋白质→氨基酸;糖类→二、单糖→溶于水→分解

净化水的方式:

(1)有机物被吸附后直接出

(2)有机物被真正降解后出水。

3、凝聚和沉淀

活性污泥的基本结构为絮凝体

沉淀是混合液中固相活性污泥颗粒同废水分离的过程

四、活性污泥的性能指标、相关参数(★)

1、污泥浓度(★★)

(1)MLSS(g/L,mg/L)

--指1L混合液中所含的悬浮固体的重量。

一般在活性污泥曝气池内:

MLSS=2-6g/L

(2)MLVSS(g/L,mg/L)

--指1L混合液中所含的挥发性悬浮固体的重量。

2、污泥沉降比(SV)(★★)

--指一定量的曝气池混合液静置30min后,沉淀污泥与原混合液体积比SV=V污泥/V混合液×100%

通常,曝气池混合液的SV正常范围:

15%-30%。

3、污泥体积指数(SVI)(★★)

(1)定义:

曝气池混合液经30min沉淀后,1g干污泥形成的湿泥的毫升数,mL/g。

(2)测定方法

①在曝气池出口处取混合液试样;

②测定MLSS(g/L);

③把试样放在一个1000mL的量筒中沉淀30min,读出活性污泥的体积(mL);

④按下式计算:

SVI=(SV的百分数×10)/MLSS(g/L)

SVI较高→SV值较大,疏松,有机物含量高→沉淀性能较差;

SVI较小→紧密,无机化程度高→沉淀性能好。

通常,SVI<100,沉淀性能良好;

SVI=100-200时,沉淀性一般;

SVI>200时,沉淀性较差,污泥易于膨胀。

一般常控制SVI在50-150之间为宜

4、负荷(★)

(1)水力负荷q(m3/h.m2)

(2)BOD5去除负荷:

(3)容积负荷Lv:

(kgBOD5/m3·d)

(4)污泥负荷(Ls,F/M)(kgBOD5/kgMLSS·d)

F/M≥2.2,营养丰富,微生物处于对数增长期

F/M≈0.5,微生物处于增殖衰减。

F/M<0.2,微生物进入内源呼吸期。

5、回流污泥浓度(回流比r)

6、进水率(Z)Z=qv/(qv+qr)

=1/(1+r)

7、泥龄(θ、ts)

定义:

微生物(污泥)在曝气池中的平均停留时间ts,也就是曝气池中活性污泥平均更新一遍所需的时间。

ts与t的关系:

ts长→有机物大多被氧化→需氧量大→t↑

ts短→有机物被氧化的量少→需氧量少→t↓

注意:

通常活性污泥法系统的ts约为水力停留时间的20倍

一般曝气池污泥停留时间2d,水力停留时间4-5h。

五、活性污泥性能的影响因素(★)

1、有机物浓度

当ρS>>Km时,v=vmax,活性污泥生长最快

当ρS<

2、溶解氧

DO过小,影响微生物的生长及系统的正常运行。

DO过大,风机要求大,耗电多。

正常运行:

DO浓度≥2mg/L,一般在2-4mg/L。

.3、营养物质(配比)C:

N:

P=100:

5:

1

4、温度

化学反应:

↑10℃,v↑2~4倍;酶促反应:

↑10℃,v↑1~2倍。

曝气池系统水温的适宜范围:

20-30℃

5、pH值

一般pH=6.5-7.5,活性污泥的生长繁殖情况最好。

pH<6.5,霉菌↑,破坏活性污泥的结构→污泥膨胀;

pH过高(≈9),代谢缓慢→菌胶团粘性物质解体。

6、有毒物质

破坏细菌细胞的构造物质和酶系统,使细菌由于失去活性而不能正常生长繁殖,甚至直接被毒伤、毒死。

有毒物质:

重金属(砷、铅、隔、铬、铜、锌等),及酚、氰、醛、硝基化合物等有机型毒物。

第三节气体传递和曝气池

1.构成活性污泥法的三个要素(★)

一是引起吸附和氧化分解作用的微生物,也就是活性污泥;

二是废水中的有机物,它是处理对象,也是微生物的食料

三是溶解氧,没有充足的溶解氧,好氧微生物既不能生存,也不能发挥氧化分解作用。

一、气体传递原理(★)

双膜理论的基点是认为在气液界面存在着二层膜(即气膜和液膜)这一物理现象。

这两层薄膜使气体分子从一相进入另一相时受到了阻力。

当气体分子从气相向液相传递时,若气体的溶解度低,则阻力主要来自液膜。

曝气的作用:

(1)向曝气池混合液提供DO;

(2)使混合液悬浮固体处于悬浮状态;

(3)实现微生物、有机物、DO三者间的充分混合接触。

二、曝气设备分类:

鼓风曝气、机械曝气

鼓风曝气:

空气过滤器、鼓风机、空气输配管系统、扩散器

机械曝气:

表面曝气机(竖轴式、卧轴式)

表面曝气机充氧原理:

(1)曝气设备的提水和输水作用,使曝气池内液体不断循环流动,从而不断更新气液接触面,不断吸氧;

(2)曝气设备旋转时在周围形成水跃,并把液体抛向空中,剧烈搅动而卷进空气;

(3)曝气设备高速旋转时,在后侧形成负压区而吸入空气。

曝气设备性能指标

氧转移率、充氧能力、氧利用率

三、曝气池的三种池型

推流式曝气池、完全混合式曝气池、两种池型结合式

(一)推流式曝气池

1、平面布置:

(1)L:

B=(5~10):

1

(2)进水方式不限,出水用溢流堰;

2、横断面布置:

B:

H(有效水深)=(1~2):

1,Hmin=3m,Hmax=9m

曝气方式:

一般采用鼓风曝气

3、常用指标

水力停留时间T:

4-8hMLSS:

ρSa2000-3000mg/L去除率E:

90-95%

4、改进工艺

(1)渐减曝气工艺

(2)多点进水

优点:

1)底物浓度分布较均匀

2)提高耐冲击负荷的能力

3)同条件下,曝气池中MLSS高于推流式

(二)完全混合曝气池

池形:

圆形矩形方形

根据和沉淀池的关系:

分建式(曝气区、沉淀区分开;需要专设的污泥回流设备)

合建式:

靠表曝机造成水位差使回流污泥循环。

(1)结构:

①中间进水,四周出水②表面曝气③通过回流缝的宽度控制回流量

(2)特点

①完全混合流态,池中有机物浓度始终保持出水浓度ρSe;

②耐冲击;③进水和污泥混合良好。

④活性污泥处于生长曲线上某一点

(3)表面曝气曝气叶轮→曝气+搅拌注意:

控制叶轮淹没深度

第四节活性污泥法的发展和演变

一、发展及应用

1、传统曝气工艺2、逐点进水工艺(多点进水)3、渐减曝气工艺

4、吸附再生工艺5、纯氧曝气6、延时曝气7、浅层曝气8、深层曝气

二、吸附再生工艺(接触稳定法)

(1)结构吸附池+再生池

(2)特点(与传统工艺相比)

①F/M较高,减少投资

②再生池中污泥处于“空曝”状态→吸附速度快;抑制丝状菌

三、接触稳定法:

直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。

四、纯氧曝气:

纯氧代替空气,可以提高生物处理的速度。

原理:

(1)↑氧的饱和溶解度(2-4mg/L→7-8mg/L)→↑微生物的降解能力。

(2)加大推动力

优点:

(1)曝气时间短;

(2)曝气池体积小,投资减少;(3)曝气量小

缺点一般要求设备密封,纯氧发生器容易出现故障,装置复杂,运转管理较麻烦

6、延时曝气(氧化沟工艺)

t曝:

1~3d

特点:

(1)水停留时间长

(2)池体积大(3)MLSS较高(3000-6000mg/L)

(4)活性污泥部分处于内源呼吸状态(5)剩余污泥量少,且稳定,可直接排放

五、活性污泥处理常用工艺

1、氧化沟(循环曝气池)

(1)在构造方面的特征:

1)形状:

环形沟渠状,平面为椭圆形、圆形2)进水管进水;溢流堰式出水

(2)在水流混合方面的特征:

介于完全混合与推流之间→高氧区、缺氧区

(3)在工艺方面的特征

1)可不设初沉2)可不单设二沉池3)BOD负荷低

2、SBR法(序批式活性污泥法)

(1)五阶段:

进水→反应→沉淀→排水→闲置

(2)特点:

反应、沉淀在同一反应器中进行

(3)与连续活性污泥法相比

1)流程简单,占地省,投资小2)理想沉淀,出水质量高

3)脱N除P能力较强4)生化反应速率大

5)可防止污泥膨胀6)耐冲击能力较高

3、AB法

1)全池:

预处理+A段+B段

2)A段:

吸附池+中间沉淀池B段:

曝气池+二沉池

3)具有抗冲击负荷,抗pH值变化的能力

第五节活性污泥法的工艺设计

一、主要设计内容:

 

 

(1)流程选择;

 

(2)曝气池容积的确定;

 (3)供氧设备的设计;

 (4)二次沉淀池澄清区与污泥区容积选择的确定;

 (5)剩余污泥的处置。

二、推流式曝气池的相关计算方法(★)

(一)曝气池容积的确定(P118表12-1)

1、负荷法设计

2、根据停留时间(T)设计

二)活性污泥增长量

1、理论公式y、Kd的取值见P125表12-2

2、常用公式

a—kgMLSS/kgBOD5.d:

0.30-0.75平均0.52b—d-1:

0.02-0.18平均0.07

(三)需氧量的计算

O2=a’LrVρX+b’Vρx=a’qv(ρS0-ρSe)+b’VρX

a’kgO2/kgBOD0.25-0.76平均0.47bkgO2/kgMLSS.d——0.10-0.37平均0.17

第六节二次沉淀池

1、二沉池的目的:

澄清、污泥浓缩

2、基本原理:

同初沉池。

3、基本形式:

平流、竖流、

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2