外文文献翻译基于激光测距仪的行人跟踪文档格式.docx

上传人:b****1 文档编号:4894093 上传时间:2023-05-04 格式:DOCX 页数:9 大小:22.66KB
下载 相关 举报
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第1页
第1页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第2页
第2页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第3页
第3页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第4页
第4页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第5页
第5页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第6页
第6页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第7页
第7页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第8页
第8页 / 共9页
外文文献翻译基于激光测距仪的行人跟踪文档格式.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

外文文献翻译基于激光测距仪的行人跟踪文档格式.docx

《外文文献翻译基于激光测距仪的行人跟踪文档格式.docx》由会员分享,可在线阅读,更多相关《外文文献翻译基于激光测距仪的行人跟踪文档格式.docx(9页珍藏版)》请在冰点文库上搜索。

外文文献翻译基于激光测距仪的行人跟踪文档格式.docx

Theabilityofrobotstotrackandfollowmovingtargetsisessentialtomanyreallifeapplicationssuchasmuseumguidance,officeorlibraryassistance.Ontopofbeingabletotrackthepedestrians,oneaspectofhuman-robotinteractionisrobot’sabilitytofollowapedestriantargetinanindoorenvironment.Therearevariousscenarioswheretherobotcanbegiveninstructionssuchasholdingbooksinalibraryorcarryinggroceriesatastorewhilefollowingthepedestriantarget.

ThekeycomponentsofmovingtargetfollowingtechniqueincludeSimultaneousLocalizationandMapping(SLAM),DetectingandTrackingMovingObjects(DATMO),andmotionplanning.Moreoftenthannot,therobotsarerequiredtooperateindynamicenvironmentswheretherearemultiplepedestriansandobstaclesinthesurroundings.Consequently,trackingandfollowingaspecifictargetpedestrianbecomemuchmorechallenging.Inotherwords,thefollowingbehaviorsmustberobustenoughtodealwithconstantocclusionsandobstacleavoidances.

Whendesigningthefollowingalgorithm,oneintuitiveapproachistosetthetargetlocationasthedestinationfortherobot.However,thisapproachcaneasilyleadtolosingthetargetbecauseitdoesnotreacttothetarget’smotionnorconsiderthevisibilityproblem(sincethetargetmaybeoccludedbyobstaclesandbecomeinvisible).Forachievingrobusttargetfollowingandtracking,therobotshouldhavetheintelligenttopredicttargetmotionandgatherobservationsactively.

Inthispaper,weproposeamovingtargetfollowingplannerwhichisabletomanageobstacleavoidanceandtargetvisibilityproblems.Experimentalresultsareshowntocomparetheintuitiveapproachwithourapproachandprovetheimportanceofactiveinformationgatheringinplanning.Thispaperisorganizedasfollow:

SectionIIdiscussesrelatedworksofDATMOandplanningalgorithms.SectionIIIdescribesourDATMOsystemandintroducesourtargetfollowingplanner.Lastly,SectionIVillustratestheexperimentalresults.

II.RELATEDWORKS

TherearevariousapproachestodetectandtrackmovingobjectssuchasbuildingstaticanddynamicoccupancygridmapsproposedbyWolf&

Sukhatme[1],findinglocalminimainthelaserscanasinHoriuchietal.’swork[2]orusingmachinelearningmethodsinSpinelloetal.’swork[3].MostofDATMOapproachesassumethattherobotisstationaryorhasperfectodometry.Whentrackingmovingobjectsusingmobilerobots,ithasbeenproveninWangetal.’swork[4],thatSLAMandDATMOcanbedonesimultaneouslyifthemeasurementscanbedividedintostatic

anddynamicparts.Inourwork,weimplementaDATMOalgorithmwhichissimilartotheoneinMontesanoetal.’swork[5].Ascanmatchingmethodisusedtocorrectrobotodometryandmovingpointsaredetectedbymaintainingalocaloccupancygridmap.Moreover,ExtendedKalmanFilter(EKF)isappliedtotrackthemovingobjects.

Thispaperaimstosolvemovingtargetfollowingproblemwiththeexistenceofobstacles.Fornavigatinginstaticenvironments,therearemanysuccessfulworkssuchasFoxetal.[6],Ulrich&

Borenstein[7]Minguez&

Montano[8],Seder&

Petrovi’c[9].However,thosemethodsaredesignedtoreachafixedgoalandassumethattheenvironmentandrobotstatesarefully-observable.Applyingtraditionalobstacleavoidancealgorithmsonthetargetfollowingtaskcanfaileasilybecauseamovingtargetcanchangeitsspeedandmovingdirectionatanytimeandthetargetcanbeoccludedbyobstacles.Forplanningunderimperfectperception,Partially-ObservableMarkovDecisionProcess(POMDP)providesageneralframework.However,usingPOMDPtocomputeoptimalpoliciesareusuallyverycomputationallyexpensivebecauseithastocomputeaplanoverbeliefspace(typicallyN-1dimensionalforanN-stateproblem.).ForapplyingPOMDPsonpracticalproblems,mostworksaimedonreducingthedimensionofbeliefspace.SuchlikePBVIPineauetal.[10],AMDPRoyetal.[11]andMOMDPSylvieetal.[12].ThosemethodsaremuchfasterthanoriginalPOMDP,buttheircomputationalcomplexityarestilltoohightodoreal-timeplanning.Ourmethodinthispaperismorelikeasub-optimalbutfastapproach:

assumingthattherobotalwaysreceivesthemostpossibleobservationsandplanapathwhichcanreachthegoalandminimizetheuncertaintyonparticularstates.Forexample,inPrentice&

Roy[13],therobotaimsonreachingthegoalwithminimumuncertaintyonitsposition,soitmaychooseapathwhichislongbuthasenoughlocalizationlandmarks.

Inthispaper,weproposeamotionplannerformovingtargetfollowing.TheplannerusesanextensionofdynamicwindowapproachpropsedbyChou&

Lian[14]tofindcollision-freevelocitiesandchooseapropervelocityusingheuristicsearch.Costfunctionsaredesignedforminimizingthedistancebetweenrobotandtargetandmaximizethepossibilitythattherobotcankeepobservingthetargetinafixedtimehorizon.Additionally,weapplytheconceptinnearnessdiagramalgorithmsuchastheoneinMinguez&

Montanos’work[8]forcomputingabetterestimationofthedistancebetweenrobotandtargetandthereforeachieveasmooth,non-hesitatingperformance.

III.MOVINGTARGETFOLLOWINGANDOBSTACLEAVOIDANCE

ItisessentialthatourDATMOsystemisabletotrackthemovingtarget,pedestrianinthiscase,withgreataccuracy.Themoreprecisepedestrianlocationacquired,thebettertherobotperformswhenfollowingthetarget.

A.DetectingandTrackingMovingObjects

Fordetectingmovingpointsinthelaserdata,weadopttheconceptofoccupancygridmapproposedbyWolf&

Sukhatme[1].Alocaloccupancygridmapisaintainedandusedtodifferentiatethemovingpoints.Forrobotlocalization,ascanmatchingtechniquecalledIteratedClosestPoint(ICP)isusedtoacquirerobotpose.Themovingpointsarefilteredoutofthedatapriortoscanmatchinginordertomaintaintheposeaccuracy.Thedetectedmovingpointsaresegmentedintonumerousclustersanddeterminediftheybelongtoapedestrianusingfeaturessuchasmotionvelocity,localminima,andsize.Finally,eachofthepedestrianistrackedusingExtendedKalmanFilter(EKF)whichsolvestheocclusionproblemandprovidesusthecomputationaladvantageinrealtimeperformance.

B.FollowingMethod

Ourgoalistoaccomplishmovingtargetfollowingwiththeexistenceofobstacles.Areasonablesolutionistoseeitasapathplanningproblemanduseobstacleavoidancealgorithmstofindcollision-freeactions.Inthispaper,weapplyourpreviouswork,DWA*,Chouetal.[10]astheobstacleavoidancealgorithm.

TheprocedureofDWA*isshowninFig.1(a),itisatrajectory-rolloutalgorithm.TherightsideofFig.1(a)showstheprocedureforcomputingpropermotioncommands.First,theenvironmentinformationisrealizedasintervalconfigurationforfasterprocessing.Eachintervalvaluerepresentsthemaximumdistancecanberaveledbytherobotonacertaincirculartrajectory.Second,theintervalsareclusteredasnavigableareas.Third,foreacharea,acandidatevelocityisdeterminedaccordingtoanobjectivefunction.Foreachcandidatevelocity,anewrobotpositioniscomputedasanewnodeandsavedinatrajectorytree.Thenanodewiththeminimumestimatedcostvaluewillbeextractedasthebasenodeforgeneratingnewnodes.Theprocedureisrepeateduntilgoallocationisexpandedorthetreedepthreachesacertainvalue.Afterthetreeexpansionstops,thedeepestnodeisdeterminedasatemporalgoal,andthepresentcandidatevelocitywhichcanleadtherobottothetemporalgoalisselected.

Inourwork,weusedtwodifferentmethodsforintegratingDATMOandDWA*:

pseudogoalmethodandtrajectoryoptimizationmethod.Pseudo-goalmethodisamoreintuitiveapproachwhichdoesnotconsiderthetargetvelocitywhenfollowing.Anotherapproachistrajectory-optimizationwhereatrajectory-rolloutcontrollerisusedtoapproximateapredictedtargettrajectoryandmaximizetargetvisibility.Theirperformanceswillbeshownandcomparedinthenextsection.

1)Pseudo-goalmethod

Whenimplementingpeoplefollowingalgorithm,anintuitiveapproachissettingthepresentlocationofthemovingtargetasthegoalofnavigationalgorithm.Considerthetrackedtargetatananglewithrespecttotherobot,DWA*algorithmwillgenerateanangularandtranslationalvelocitywhichproducesanarc-liketrajectory.Ifthegoaliswithinacloseproximityoftherobot,theangularvelocitywillbesmallandtherc-likerouteoftenresultsinanindirectordetourpathfortherobottoreachthegoal(asshowninFig.2).Onthecontrary,ifthegoalissetfurtherawayfromtherobotatthesameangle,anymovementofthegoalwillresultinamuchlargerdisplacementchangecomparetowhenthegoalisclosetotherobot.Therefore,theangularvelocitywouldincreaseinresponsetothesubstantialchangeofthegoallocation.Consequently,thetrajectorybecomesmoredirecttowardthegoal.

Inthepseudo-goalmethod,thespaceinfrontoftherobotisdividedinto7trajectoriesat35_,55_,70_,90_,110_,130_,145_asshowninFig.3.Apseudogoalisset3timestheoriginaldistancebetweenthegoalandrobotalongeachtrajectory.Afteracquiringthepedestrianlocation(redcircleinFig.3),thepseudogoalwithtrajectoryclosesttothepedestrianlocationisthenselected.Bysettingthegoalfurtherawayfromtherobot,itremediestheissueofsmallangularvelocityandprovidesamuchmoredirectpathtoreachthegoal.

Anotherproblemisthelimitedsensingability.Inthispaper,thealgorithmisimplementedonamobilerobotwitha180-degreePOVLRF.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2