自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx

上传人:b****2 文档编号:489746 上传时间:2023-04-29 格式:DOCX 页数:15 大小:279.24KB
下载 相关 举报
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第1页
第1页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第2页
第2页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第3页
第3页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第4页
第4页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第5页
第5页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第6页
第6页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第7页
第7页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第8页
第8页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第9页
第9页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第10页
第10页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第11页
第11页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第12页
第12页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第13页
第13页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第14页
第14页 / 共15页
自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx

《自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx》由会员分享,可在线阅读,更多相关《自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx(15页珍藏版)》请在冰点文库上搜索。

自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文.docx

自动化专业外文翻译alicia3爬壁机器人的粘着控制本科论文

英语原文:

AdhesionControlfortheAlicia3ClimbingRobot

D.LongoandG.Muscato

DipartimentodiIngegneriaElettricaElettronicaedeiSistemi,Universit`adegli

StudidiCatania,vialeA.Doria6,95125CataniaItaly

Abstract.Climbingrobotsareusefuldevicesthatcanbeadoptedinavarietyof

applicationslikemaintenance,building,inspectionandsafetyintheprocessand

constructionindustries.

ThemaintargetoftheAlicia3robotistoinspectnonporousverticalwallwithanyregardforthematerialofthewall.Tomeetthistarget,apneumatic-likeadhesionforthesystemhasbeenselected.AlsothesystemcanmoveoverthesurfacewithasuitablevelocitybymeansoftwoDCmotorsandovercomesomeobstaclethankstoaspecialcupsealing.

Thisadhesiontechnologyrequiresasuitablecontrollertoimprovesystemreliability.Thisisbecausesmallobstaclespassingunderthecupandwallirregularitycanvarythevalueoftheinternalpressureofthecupputtingtherobotinsomeanomalousworkingconditions.Themethodologiesusedforderivinganaccuratesystemmodelandcontrollerwillbeexplainedandsomeresultwillbepresentedinthiswork.

1Introduction

Climbingrobotscanbeusedtoinspectverticalwallstosearchforpotentialdamageorproblemsonexternalorinternalsurfaceofaboveground/undergroundetrochemicalstoragetanks,concretewallsandmetallicstructures[1–4].Byusingthissystemascarrier,itwillbepossibletoconductanumberofNDIoverthewallbycarryingsuitableinstrumentation[5,6].Themainapplicationoftheproposedsystemistheautomaticinspectionoftheexternalsurfaceofabovegroundpetrochemicalstoragetankswhereitisveryimportanttoperformperiodicinspections(rateofcorrosion,riskofairorwaterpollution)atdifferentrates,asstandardizedbytheAmericanPetroleumInstitute[7].Thesystemcanbealsoadoptedtoinspectconcretedams.

Whilethesekindsofinspectionsareimportanttopreventecological

disastersandrisksforthepeopleworkingaroundtheplant,thesearevery

expensivebecausescaffoldingisoftenrequiredandcanbeverydangerous

 

Fig.1.TypicaloperatingenvironmentandtheAlicia3robot

fortechniciansthathavetoperformtheseinspections.Moreover,forsafety

reasons,plantoperationsmustbestoppedandthetankmustbeemptied,

cleanedandventilatedwhenhumanoperatorsareconductinginspections.In

Fig.1(a)and1(b)typicalenvironmentsforclimbingrobotsareshown.Figure

1cshowstheAlicia3robotprototypewhileattachedtoaconcretewallduring

asystemtest.

2SystemDescription

TheAliciaIIsystem(thebasicmodulefortheAlicia3system)ismainly

composedbyacup,anaspirator,twoactuatedwheelsthatusetwoDCmotors

withencodersandgearboxesandfourpassivesteelballswithclearanceto

guaranteeplaincontactofthecuptothewall.Thecupcanslideoverawall

bymeansofaspecialsealingthatallowsmaintainingasuitablevacuuminside

thecupandatthesametimecreatingtherightamountoffrictionwithrespect

systemweightandarangeofatargetwallkind.

ThestructureoftheAliciaIImodule,showninFig.2,currentlycomprises

threeconcentricPVCringsheldtogetherbyanaluminumsdisc.Thebigger

ringandthealuminumsdischaveadiameterof30cm.Thesealingsystemis

allocatedinthefirsttwoexternalrings.Boththetworingsandthesealingare

 

Fig.2.StructureoftheAliciaIImodule

designedtobeeasilyreplaceable,astheywearoffwhiletherobotisrunning.

Moreoverthesealingallowstherobotpassingoversmallobstacles(about1cm

height)likescrewsorweldingtraces.Thethirdring(thesmallestone)isused

asabaseforacylinderinwhichacentrifugalairaspiratoranditselectrical

motoraremounted.Theaspiratorisusedtodepressurizethecupformedby

theringsandthesealing,sothewholerobotcanadheretothewalllikea

standardsuctioncup.

Themotor/aspiratorsetisveryrobustandiscapableofworkinginharsh

environments.Thetotalweightofthemoduleis4Kg.

TheAlicia3robotismadewiththethreemoduleslinkedtogetherbymeans

oftworodsandaspecialrotationaljoint.Byusingtwopneumaticpistonsitis

possibletoriseandtolowereachmoduletoovercomeobstacles.Eachmodule

canberaised15cmwithrespecttothewall,soobstaclesthatare10–12cm

height,canbeeasilyovercame.Thesystemisdesignedtobeabletostay

attachedusingonlytwocupswhilethethird,anyofthethree,israisedup.

Thetotalweightofthesystemisabout20Kg.

3Electro-PneumaticSystemModel

Byusingthiskindofmovementandsealingmethod,itispossible,dueto

unexpectedsmallobstaclesonthesurface,tohavesomeairleakageinthe

cup.Thisleakagecancausetheinternalnegativepressuretoriseupandin

thissituationtherobotcouldfalldown.Ontheothersideiftheinternal

pressureistoolow(highΔp),averybignormalforceisappliedtothe

system.Asaconsequence,thefrictioncanincreaseinsuchawaytonot

allowrobotmovements.Thisproblemcanbesolvedbyintroducingacontrol

looptoregulatethepressureinsidethechambertoasuitablevaluetosustain

thesystem.Theconsideredopenloopsystemandthemosteasilyaccessible

systemvariableshasbeenschematizedinFig.3;inthisschemethefirstblock

includestheelectricalandthemechanicalsubsystemandthesecondblock

includesthepneumaticsubsystem.TheusedvariablesaretheMotorvoltage

reference(theinputsignalthatfixesthemotorpower)andtheVacuumlevel

(thenegativepressureinsidethechamber).

 

Fig.3.Theopenloopsystemconsidered

 

Fig.4.I/Ovariableacquisitionscheme

Sinceitisverydifficulttohaveareliableanalyticalmodelofthatsystem,

becauseofthebignumberofparametersinvolved,ithasbeendecidedto

identifyablackboxdynamicmodelofthesystembyusinginput/output

measurements.Thismodelwasdesignedwithtwopurposes:

tocomputea

suitablecontrolstrategyandtoimplementasimulatorfortuningthecontrol

parameters.

Anexperimentalsetupwasrealized,asrepresentedinFig.4,byusing

theDS1102DSPboardfromDspaceinordertogenerateandacquirethe

input/outputvariables.SincetheaspiratorisactuatedbyanACmotor,a

powerinterfacehasbeenrealizedinordertotranslateinpowerthereference

signalforthemotorcomingfromaDACchanneloftheDS1102board.The

outputsystemvariablehasbeenmeasuredwithapiezoresistivepressure

sensorwithasuitableelectronicconditioningblockandacquiredwithone

analoginputoftheDS1102.ThesoftwarerunningontheDSpaceDSPboard,

inthisfirstphasesimplygeneratesanexcitingmotorvoltagereferencesignal

(pseudorandom,ramporstepsignals)andacquiresthetwoanaloginputs

withasamplingtimeof0.1s,storingthedatainitsinternalSRAM.

TypicalInput/OutputmeasurementsarerepresentedinFig.5andFig.6.

Inordertoobtainbetterresultsinsystemmodeling,therelationshipbetween

InputandOutputneedstobeconsideredasnon-linear.ANARXmodelhas

beenusedisintheformof

(1),wherefisanonlinearfunction[8,9].

y(k)=f(u(k),u(k−1),...;y(k−1),y(k−2),...)

(1)

Toimplementthiskindofnon-linearity,sometrialshavebeendoneusing

Neuro-FuzzyandArtificialNeuralNetwork(ANN)methodologies.Oncethat

modelhasbeentrainedtoasuitablemeansquareerror,ithasbeensimulated

givingitasinputtherealinputmeasurementonly(infinitesteppredictor)[8].

So

(1)canbemodifiedinordertoobtain

(2).

˜y(k)=f(u(k),u(k−1),...;˜y(k−1),˜y(k−2),...)

(2)

In

(2),4yistheestimatedsystemoutput.Inordertocomparethesimulation

results,anumberofdescriptorhasbeendefinedandused.Amongtheseare

meanerror,quadraticmeanerrorandsomecorrelationindexes.Afirstset

ofsimulationforbothmethodologieshasbeendonetofindoutthebestI/O

regressiontermschoice.

3.1Neuro-FuzzyIdentification

Usingthiskindofmethodology,thebestmodelstructurewasfoundtobein

theformof(3).

y(t)=f(u(t),y(t−1))(3)

Oncethebestmodelstructurehasbeenfound,sometrialshavebeen

performedmodifyingthenumberofmembershipfunctions.Thebestresults,

comparingtheindexesdescribedabove,havebeenobtainedwith3functions

andinFig.7thesimulationresultshasbeenreported.Thestructureofthe

Neuro-FuzzymodelistheANFIS-Sugeno[10].

3.2ANNIdentification

Usingthiskindofmethodology,thebestmodelstructurewasfoundtobein

theformof(4).

y(t)=f(u(t),u(t−1),u(t−2),y(t−1),y(t−2))(4)

Asinglelayerperceptronnetworkhasbeenused.Thetrainingalgorithm

isthestandardLevenberg–Marquardt.

Oncethebestmodelstructurehasbeenfound,sometrialshavebeenperformed

modifyingthenumberofhiddenneurons.Thebestresults,comparing

theindexesdescribedabove,havebeenobtainedwith7hiddenneuronsand

inFig.8thesimulationresultshasbeenreported.

Fromacomparisonbetweenthetwomodelsandtheirrelatedindexes,it

canbeseenthattheNeuro-Fuzzymodelhasbestapproximationperformance

anduselessinputinformation.Inthenextsection,thismodelwillbeusedas

systememulatortotuneandtesttherequiredregulator.

4PressureControlAlgorithm

Onceasystemmodelhasbeenobtained,aclosedloopconfigurationlikethat

inFig.9,hasbeenconsidered.

Thetargetofthecontrolalgorithmistoregulatetheinternalvacuumlevel

toasuitablevalue(fromsometrials,itwasfixedtoabout10kPa)tosustain

thewholesystemanditspayload;themaximumsteadystateerrorallowed

wasfixed

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2