毕业设计数字电压表的制作.docx

上传人:b****3 文档编号:5029401 上传时间:2023-05-07 格式:DOCX 页数:40 大小:64.54KB
下载 相关 举报
毕业设计数字电压表的制作.docx_第1页
第1页 / 共40页
毕业设计数字电压表的制作.docx_第2页
第2页 / 共40页
毕业设计数字电压表的制作.docx_第3页
第3页 / 共40页
毕业设计数字电压表的制作.docx_第4页
第4页 / 共40页
毕业设计数字电压表的制作.docx_第5页
第5页 / 共40页
毕业设计数字电压表的制作.docx_第6页
第6页 / 共40页
毕业设计数字电压表的制作.docx_第7页
第7页 / 共40页
毕业设计数字电压表的制作.docx_第8页
第8页 / 共40页
毕业设计数字电压表的制作.docx_第9页
第9页 / 共40页
毕业设计数字电压表的制作.docx_第10页
第10页 / 共40页
毕业设计数字电压表的制作.docx_第11页
第11页 / 共40页
毕业设计数字电压表的制作.docx_第12页
第12页 / 共40页
毕业设计数字电压表的制作.docx_第13页
第13页 / 共40页
毕业设计数字电压表的制作.docx_第14页
第14页 / 共40页
毕业设计数字电压表的制作.docx_第15页
第15页 / 共40页
毕业设计数字电压表的制作.docx_第16页
第16页 / 共40页
毕业设计数字电压表的制作.docx_第17页
第17页 / 共40页
毕业设计数字电压表的制作.docx_第18页
第18页 / 共40页
毕业设计数字电压表的制作.docx_第19页
第19页 / 共40页
毕业设计数字电压表的制作.docx_第20页
第20页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

毕业设计数字电压表的制作.docx

《毕业设计数字电压表的制作.docx》由会员分享,可在线阅读,更多相关《毕业设计数字电压表的制作.docx(40页珍藏版)》请在冰点文库上搜索。

毕业设计数字电压表的制作.docx

毕业设计数字电压表的制作

NewlycompiledonNovember23,2020

 

毕业设计数字电压表的制作

数字电压表的设计与制作

[摘要]随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。

在参阅大量数字电压表的基础上的数字直流电压表,所测量范围直流电压为0~500V,测量精度为。

它以单片机8951为核心,主要由转换电路将输入的模拟量转换为数字量的A/D转换器ADC0809,液晶显示器1602构成。

[关键词]:

单片机;模数转换;按键开关;液晶显示;

Designandmanufactureofdigitalvoltmeter

[Abstract]:

Withthedevelopmentofelectronicscienceandtechnology,electronicmeasurementbecomethee-workermusthavethemeans,themeasurementaccuracyandfunctionalrequirementsofincreasinglyhigh,whilethevoltagemeasurementisverystrong,becausethevoltagemeasurementofthemostcommon.InalargenumberofdigitalvoltagemeterreadbasedonthedigitalDCvoltagemeter,themeasuringrangeDCvoltage0~500V,measurementprecisionis.Itisbasedon8951MCUcore,mainlybytheconversioncircuittoconvertanaloginputtodigitalvolumeA/DconverterADC0809,LCDdisplay1602form.

[Keywords]:

SCM;analog-digitalconversion;buttonswitch;liquidcrystaldisplay;

引言

数字电压表出现在50年代初,60年代末发起来的电压测量仪表,简称DVM,它采用的是数字化测量技术,把连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后再通过显示器件显示。

这种电子测量的仪表之所以出现,一方面是由于电子计算机的应用逐渐推广到系统的自动控制信实验研究的领域,提出了将各种被观察量或被控制量转换成数码的要求,即为了实时控制及数据处理的需要;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的进步,为数字化仪表的出现提供了条件。

所以,数字化测理仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦锁和陈旧方式也催促了它的飞速发展,如今,它又成为向智能化仪表发展的必要桥梁。

如今,数字电压表已绝大部分已取代了传统的模拟指针式电压表。

因为传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。

而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强,可扩展性强等优点已被广泛的应用于电子及电工的测量,工业自动化仪表,自动测试系统等智能化测量领域。

显示出强大的生命力。

数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度慢,重量达几十公斤,体积大。

继之出现了斜波式电压表,它的速度方面稍有提高,但是准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐近式结构,它不仅保持了比较式准确度高的优点,而且速度也有了很大的提高,但它有一缺点是抗干扰能力差,很容易受到外界各种因素的影响。

随后,在斜波式的基础上双引伸出阶梯波式,它的唯一的进步是成本降低了,可是准确宽,速以及抗干扰能力都未能提高。

而现在,数字电压表的发展已经是非常的成熟,就原理来讲,它从原来的一,二种已发展到多种,在功能上讲,则从测单一参数发展到能测多种参数;从制作元件来看,发展到了集成电路,准确度已经有了很大的提高,精度高达1NV;读数每秒几万次,而相对以前,它的价格也有了降低了很多。

目前实现电压数字化测量的方法仍然模-数(A/D)转换的方法。

而数字电压表种类繁多,型号新异,目前国际仍未有统一的分类方法。

而常用的分类方法有如下几种:

按用途来分:

有直流数字电压表,交、直流数字电压表,交直流万用表等。

按显示位数来分:

有4位,5位,6位,7位,8位等。

按测量速度来分:

有低准确度,中准确度,高准确度等。

按测量速度来分:

有低速,中速,高速,超高速等。

但在日常生活中,数字电压表一般是按照原理不同进行分类的,目前大致分为以下几类:

比较式,电压——时间变换式,积分式等。

在电量的测量中,电压、电流和频率是最基本的三个被测量。

其中,电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

另外,由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受用户青睐,数字式电压表就是基于这种需求而发展起来的,是一种必不可少的电子测量仪表。

1.设计方案的选择

设计数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。

又由于在现实的工作生活中,电压表的测量测程范围是比较大的,所以必须要对输入电压作分压处理,而各个数据处理芯片的处理电压范围不同,则各种方案的分段也不同。

下面介绍两种数字电压表的设计方案。

基于分立元件的电压表

这种设计方案是由模拟电路与数字电路两大部分组成,模拟部分包括输入放大器、A/D转换器和基准电压源;数字部分包括计数器、译码器、逻辑控制器、振荡器和显示器。

其中,A/D转换器是它的核心器件,它将输入的模拟量转换成数字量。

模拟电路和数字电路是相互联系的,由逻辑控制电路产生控制信号,按规定的时序将A/D转换器中个组模拟开关接通或断开,保证A/D转换正常进行。

A/D转换结果通过计数译码电路变换成段码,最后驱动显示器显示出相应的数值。

此方案设计其优点是,设计成本低,能够满足一般的电压测量。

但设计不灵活,都是采用纯硬件电路。

很难将其在原有的基础上进行扩展。

基于单片机系统及A/D转换芯片的电压表

这种方案是利用单片机系统与模数转换芯片、显示模块等的结合构建数字电压表。

由于单片机的发展已经成熟,利用单片机系统的软硬件结合,可以组装出许多的应用电路来。

此方案的原理是模数(A/D)转换芯片的基准电压端,被测量电压输入端分别输入基准电压和被测电压。

模数(A/D)转换芯片将被测量电压输入端所采集到的模拟电压信号转换成相应的数字信号,然后通过对单片机系统进行软件编程,使单片机系统能按规定的时序来采集这些数字信号,通过一定的算法计算出被测量电压的值。

最后单片机系统将计算好了的被测电压值按一定的时序送入显示电路模块加以显示。

此方案不仅能够继承上一种方案的各种优点,还能改进上一种设计方案设计不灵活,难与在原基础上进行功能扩展等不足。

单片机简介及本设计单片机的选择

综合上一章提到的两种设计方案的各方面优点及其在现在的所设计电压表的实用性,我们选择第二种电压表设计方案,即由单片机系统及数字芯片构建的方法来我们本次设计。

在这一设计中,我们涉及到了一个关键系统模块——单片机系统模块,而目前单片机的种类是很繁多的,主要有主流的8位单片机和高性能的32位单片机,结合本设计各方面因素,8位单片机对于本设计已经是绰绰有余了,但将用哪一种类8的单片机呢。

在这里,不得不先简单的介绍一下几种常用的8单片机。

单片机是指一个集成在一块芯片上的完整计算机系统,具有一个完整计算机所需要的大部分部件:

CPU,内存,总线系统等。

而目前常用的单片机的8位有51系列单片机,AVR单片机,PIC单片机。

应用最广的8位单片机还是intel的51系列单片机。

51系列单片机的特点是:

硬件结构合理,指令系统规范,加之生产历史悠久,世界有许多芯片公司都买了51的芯片核心专利技术,并在其基础上扩充其性能,使得芯片的运行速度变得更快,性价比更高。

AVR单片机是atmel公司推出较新的单片机,它的显着特点是:

高性能,低功能,高速度,指令单周期为主,但性格方面比51单片机要高。

有专门的I/O方向寄存器。

虽然有转强的驱动电压,但I/O口使用不比51单片机方便。

PIC单片机系列是美国微芯公司的产品,也是市面上增长最快的单片机之一,属精简指令集单片机,其特点是:

高速度,高性能,但在性格方面比51单片机要高,也有专门的I/O方向寄存器,I/O口使用不比51单片机方便。

综合以上各种单片机的基本性能及本设计的满足需要,我们将选择51系列单片机。

本设计中选用是51系列的AT89C51,它是低电压、低功耗、高性能的CMOS8位单片机,片内含4KB的可反复擦写的只读程序存储器和128B的随机存取数据存储器,32个I/O口线,片内振荡器及时钟电路,并与MCS-51系列单片机兼容。

在设计中,单片机起着连接硬件电路与程序运行及存储数据的任务,一方面,它将A/D转换器、显示器等通过I/O口地址线和数据线连接起来;另一方面,它将用户下载的程序通过控制总线控制数据的输入输出,从而实现册电压的功能。

下图为AT89C51单片机内部结构框图:

图AT89C51单片机内部结构框图

从内部结构图框图上可以看出AT89C51单片机包括一下资源:

(1)一个8位的CPU

(2)一个片内振荡器及时钟电路

(3)4KB的FLAShROM

(4)128的内部RAM

(5)可扩展64KB外部ROM和外部RAM的控制电路;

(6)2个16位的定时/计数器

(7)26个特殊功能寄存器

(8)4个8位的并行口

(9)一个全双工的串行口

(10)5个中断源,2个外部中断,3内部中断

(11)内部硬件看门狗电路

(12)一个SPI串行接口,用于芯片的在系统编程

AT89C51单片机有四十个引脚,其引脚图同图,引脚可分为四类:

电源和地,时钟,控制和I/O口。

管脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高电平,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取址期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

各种显示器件的介绍和选择

本次设计中有显示模块,而常用的显示器件比较多,有数码管,LED点阵,1602液晶,12864液晶等。

数码管是最常用的一种显示器件,它是由几个发光二极管组成的8字段显示器件,其特点是价格非常的便宜,使用也非常的方便,显示效果非常的清楚。

小电流下可以驱动每光,发光响应时间极短,体积小,重量轻,抗冲击性能好,寿命长。

但数码管只能是显示0——9的数据。

不能够显示字符。

这也是数码管的不足之处。

LED点阵显示器件是由好多个发光二极管组成的。

具有高亮度,功耗低,视角大,寿命长,耐湿,冷,热等特点,LED点阵显示器件可以显示数字,英文字符,中文字符等。

但用LED点阵显示的软件程序设计比较麻烦。

1602液晶是工业字符型液晶,能够同时显示16*2即32个字符。

1602液晶模块内部的字符发生存储器已经存储了160个不同的点阵字符图形,这些字这些字符有:

阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码。

使用时直接编写软件程序按一定的时序驱动即可。

它的特点是显示字迹清楚,价格相对便宜。

12864液晶也是一种工业字符型液晶,它不仅能够显示1602液晶所可以显示的字符,数字等信息,而且还可以显示8*4个中文汉字和一些简单的图片,显示信息也非常的清楚。

使用时也直接编写软件程序按一定的时序驱动即可。

不过它的价格比1602液晶贵了很多。

在本设计中,我们只需要显示最后电压的数字值和电压的单位,综合上面各种显示器件的特点:

数码管只能显示数字,不能显示单位字符,不符合本设计的要求。

而点阵显示器件驱动显示软件程序编写麻烦,占用的引脚相对也较多。

也不是理解的显示器件。

所以在本设计中,我们考虑用液晶显示器件,虽然12864液晶比1602液晶的功能强,不过在价格方面却贵了好多。

而1602液晶也足够满足本设计的需要。

因此,在本设计实验我们选择1602液晶显示器件。

1602液晶的参数资料

我们选择了1602液晶做为本设计的显示模块的显示器件。

以下是1602液晶的各方面参数:

表1.1接口信号说明

编号

符号

引脚说明

1

VSS

电源地

2

VDD

电源正极

3

VL

液晶显示偏压信号

4

RS

数据/命令选择端

5

R/W

读/写选择端

6

E

使能信号

8-14

D0-D7

DataI/O

15

BLA

背光源正极

16

BLK

背光源负极

(1).基本操作时序:

读状态:

输入:

RS=0,RW=1,E=1。

输出:

D0-D7为状态字

写状态:

输入:

RS=0,RW=0,D0-D7为指令码,E为高脉冲。

输出:

读数据:

输入:

RS=1,RW=1,E=1。

输出:

D0-D7为数据。

写数据:

输入:

RS=1,RW=0,D0-D7为数据,E为高脉冲。

输出:

表1.2状态字说明

STA7

STA6

STA5

STA4

STA3

STA2

STA1

STA0

STA0-6

当前数据地址指针的数值

STA7

读写操作使能

1:

禁止0:

允许

表指令的说明。

显示模式设置

指令码

功能

0

0

1

1

1

0

0

0

设置16*2显示,5*7点阵,8位数据口

表显示开/关及光标设置

指令码

功能

0

0

0

0

1

D

C

B

D=1开显示;D=0关显示

C=1显示光标;C=0不显示关标

B=1光标闪烁;B=0光标不显闪烁

0

0

0

0

0

1

N

S

N=1当读写一个字条款后地址指针加一,且光标加一。

N=0当读或写一个字符后地址指针减一,且光标减一。

S=1当写一个安条款,整屏显示左移(N=1)或右移(N=0),以得到光标不移动而屏幕移动的效果。

S=0当写一个字符,整屏显示不移动。

表数据控制

指令码

功能

80H+地址码(0-27H,40H-67H)

设置数据地址指针

01H

显示清屏:

1,数据指针清0

2,所有显示清0

02H

显示回车:

数据指针清0

模数(A/D)转换芯片的选择

在本设计中,模数(A/D)转换模块是一个重要的模块,它关系到最后数电压表电压值的精确度。

所以,A/D芯片的选择是设计过程中一个很重要的环节。

常用的A/D芯片有AD0809,AD0832,TLC2543C等几种。

下面简单介绍一下这三种芯片。

AD0809是8位逐次逼近型A/D转换器,它是由一个8路的模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

些A/D转换器是的特点是8位精度,属于并行口,如果输入的模拟量变化大快,必须在输入之前增加采样电路。

AD0832也是8位逐次逼近型A/D转换器,可支持致命伤个单端输入通道和一个差分输入通道。

它易于和微处理器接口或独立使用;可满量程工作;可用地址逻辑多路器选通各输入通道。

TLC2543C是12位开关电容逐次逼近A/D转换,每个器件有三个控制输入端,片选,输入/输出时钟以及地址输入端。

它可以从主机高速传输转换数据。

它有高速的转换,通用的控制能力,具有简化比率转换,刻度以及模拟电路与逻辑电路和电源噪声隔离,耐高温等特点。

综合上述几种A/D转换芯片的特点,在本设计中,我们设计的是简易数字电压表,因此在此,我们选择精度为8位的ADC0809芯片。

综合本设计的各方面考虑,我们选了ADC0809模数转换芯片。

下面就介绍此芯片的各方面资料。

ADC0809的内部结构及引脚如图所示。

1结构和转换原理

如图(3-15)所示为ADC0809的内部结构框图。

ADC0809由3部分组成:

8路模拟量选通开关、8位A/D转换器和三态输出数据锁存器。

ADC0809允许8路模拟信号输入,由8路模拟开关选通其中一路信号,模拟开关受通道地址锁存和译码电路的控制。

当地址锁存信号ALE有效时,3位地址C、B、A进入地

图ADC0809的内部结构

图ADC0809的引脚

地址锁存器,经译码后使8路模拟开关选通某一路信号。

8位A/D转换器为逐次逼近式,由256R电阻分压器、树状模拟开关(这两部分组成一个D/A变换器)、电压比较器、逐次逼近寄存器、逻辑控制和定时电路组成。

三态门输出锁存器用来保存A/D转换结果,当输出允许信号OE有效时,打开三态门,输出A/D转换结果。

因输出有三态门,便于与单片机总线连接。

表ADC0809通道地址选择表

2引脚功能

由引脚图(3-15)b所示,ADC0809共有28个引脚,

采用双列直插式封装。

ADC0809虽然有8路模拟

通道可以同时输入8路模拟信号,但每个瞬间只能

转换一路,各路之间的切换由软件变换通道地址来

实现。

其主要引脚功能如下所示。

IN0~IN7:

8路模拟量输入端。

  D7~D0:

8位数字量输出端。

  A、B、C:

3位地址输入线,用于选通8路模拟输入中的一路。

ALE:

地址锁存允许信号,输入,高电平有效。

  START:

A/D转换启动信号,输入,高电平有效。

  EOC:

A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

  OE:

数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

  CLK:

时钟脉冲输入端。

要求时钟频率不高于640KHZ。

  REF(+)、REF(-):

基准电压。

  Vcc:

电源,单一+5V。

  GND:

地。

图ADC0809的时序图

ADC0809的工作过程分为如下几步。

第一步:

首先确定A、B、C三位地址,决定选择哪一路模拟信号。

第二步:

使ALE端接收一正脉冲信号,使该路模拟信号经选择开关达到比较器的输入端。

第三步:

使START端接收一正脉冲信号,START的上升沿将逐次逼近寄存器复位,下降沿启动A/D转换。

第四步:

EOC输出信号变低,指示转换正在进行。

第五步:

A/D转换结束,EOC变为高电平,指示A∕D转换结束。

此时,数据已保存到8位锁存器中。

第六步:

OE信号变为高电平,则8位三态锁存缓冲器的三态门被打开,转换好的8位数字量数据被输出到数据线上。

如上所述,EOC信号变为高电平表示A/D转换完成,EOC可作为中断申请信号,通知89C51取走数据。

在查询传送方式中,EOC可以作为89C51查询外设(ADC)的状态信号。

ADC0809与单片机的接口

ADC0809与单片机的连接主要考虑三方面:

与单片机的数据总线、地址总线和控制总线的连接。

*数据总线。

由于ADC0809的输出D7~D0具有三态输出锁存缓冲器,因此ADC0809可以直接和单片机的数据总线~相连。

*地址总线。

地址总线的、和可以对应连接ADC0809的A、B、C三位地址信号输入线,用以控制8路模拟输入中哪一路被选中输入。

*控制总线。

有启动转换信号START、输出允许信号OE、转换结束信号EOC以及ALE等信号线的连接。

START要求是一个正脉冲信号,由单片机控制发出,输出允许信号OE也需要单片机提供一个正脉冲信号。

在A/D转换结束时,ADC0809会发出转换结束信号EOC,通知89C51可以读取转换数据。

A/D转换后得到的是数据,这些数据应传送给89C51单片机进行处理。

数据传送的关键问题是如何确认A/D转换完成,因为只有确认数据转换完成后,才能进行传送。

为此可采用下述三种方式。

1.定时传送方式

对于一种A/D转换器来说,转换时间作为一个主要技术指标是已知的和固定的。

例如,若ADC0809转换时间为128μs,相当于6MHz的89C51单片机的64个机器周期。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2