现代桥梁健康安全监测系统Word文档下载推荐.docx

上传人:b****1 文档编号:5258769 上传时间:2023-05-04 格式:DOCX 页数:15 大小:608.71KB
下载 相关 举报
现代桥梁健康安全监测系统Word文档下载推荐.docx_第1页
第1页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第2页
第2页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第3页
第3页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第4页
第4页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第5页
第5页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第6页
第6页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第7页
第7页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第8页
第8页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第9页
第9页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第10页
第10页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第11页
第11页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第12页
第12页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第13页
第13页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第14页
第14页 / 共15页
现代桥梁健康安全监测系统Word文档下载推荐.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

现代桥梁健康安全监测系统Word文档下载推荐.docx

《现代桥梁健康安全监测系统Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《现代桥梁健康安全监测系统Word文档下载推荐.docx(15页珍藏版)》请在冰点文库上搜索。

现代桥梁健康安全监测系统Word文档下载推荐.docx

监测系统为桥梁评估提供即时客观的依据,但由于资源等方面所限,就目前情况而言,传感器系统不可能涵盖所有构件。

此外,由于对大型桥梁在复杂环境下响应的认识及经验的限制,也会导致对某些关键性部位监测的不足。

大桥损伤大致可分为结构性损伤及非结构性损伤两大类。

用于结构性损伤检测和非结构性损伤检测的传感器种类和布置截然不同。

此外,非结构性损伤虽然不会减弱结构的承载能力及耐久性,但对桥梁的正常运营造成隐患。

大桥健康监测系统的主要功能包括:

(i)监测大桥的结构安全及运营状况;

(ii)提供大桥定期维修养护所需要的信息;

(iii)检验大桥设计假定和设计参数的可靠性和准确性。

我们特别强调健康监测系统能服务于大桥的定期维修及管理。

这一功能将通过建立专门的构件危险及易损性评级系统和基于整体检测及局部检测评估体系相结合来实现。

,建立一个技术先进、稳定高效的桥梁健康监测和安全评价系统,对于提升桥梁工程的设计、施工和管理水平亦具有十分重要的意义。

图1桥梁健康监测构架图

三、健康监测系统研究现状

桥梁结构健康监测及安全评价系统涉及的研究范围包括:

传感器优化布设及系统集成研究,数据采集、处理、显示及存储研究,结构状态评估研究。

传感器的优化布设(传感器类型,位置和数量)对监测结果起决定作用。

由于客观因素的制约,传感器的数量总是有限的,如何布设有限数量的传感器从噪声信号中实现对结构状态改变信息的最优采集,是大跨度桥梁健康监测的关键技术之一。

系统集成是将系统内不同功能的子系统在物理上、逻辑上和功能上连接在一起,以实现信息综合分析和管理。

系统集成是桥梁监测系统智能化程度的重要标志,旨在实现资源共享和信息综合,其发展方向是“一体化集成”和开放的分布式网络结构系统,及外部各种通信网络互联,构成信息高速公路的一个节点或广义的“信息点”。

数据采集、处理、存储及提取是桥梁监测系统的重要内容。

应向满足多媒体、同步化、宽带化、高速率、大容量等信息传输的要求方向发展,保证系统进行连续、同步的实时数据采集,及时有效地处理、分析、存储和管理庞大的数据流。

桥梁结构状态评估是桥梁监测系统的核心和目标。

借助于有限元分析模型和大量的监测数据,采用统计、系统识别和模式识别的方法,评估桥梁结构的环境和条件状态,监测结构性能及其退化趋势。

系统识别法以结构系统模型和模型估计(或修正)为基础,通过识别模型参数的变化来实现结构状态监测及损伤诊断。

基于特征的模式识别法是利用传感器信号的适当特征,通过模式分类过程来辨识结构的变化。

所谓“特征”是由测量数据转换得到的、反映结构状态分类本质的量。

振动模态参数是最早用来识别结构损伤的特征,目前得到普遍认同的一种最实用的方法就是结合系统识别、振动理论、振动测试技术、信号采集及分析等跨学科技术的试验模态分析法。

这种方法大致可分为模型修正法和指纹分析法两大类。

随着现代传感技术、计算机及通讯技术、信号分析及处理技术及结构振动分析理论的迅速发展,大型桥梁结构健康监测及安全评价技术,近年来已成为国内外工程界和学术界关注的热点。

从目前理论研究状况来看:

近年来,结构健康监测领域涌现了大量的研究论文,这些论文的研究内容包括智能传感器、传感器的优化布置、数据的无线传输、损伤识别方法、桥梁状态评估、桥梁生命周期管理养护等。

此外,还举办了许多以结构健康监测为主题的国际会议,如:

国际健康监测研讨会、欧洲健康监测研讨会、新型结构健康监测研讨会和智能结构和健康监测会议。

另外,国际模态会议、SPIE年会、欧洲智能结构和材料会议、国际结构控制会议等都有结构健康监测和损伤识别的专题。

此外,很多研究者正致力于研究并制定桥梁健康监测系统的设计指南和规范,如:

Lauzon等研究者提出了一个桥梁监测系统设计建议;

美国Dexrel大学的Aktan教授等制定了比较详细的健康监测系统的设计指南;

加拿大ISIS组织的主席Mufti教授也主持起草了一份结构健康监测指南。

英国的研究者制定了一个指导健康监测系统设计的指南。

香港理工大学以高赞明教授为首的课题组也正致力于研究制定专门用于大跨索桥监测系统的设计指南。

鉴于桥梁结构健康监测及安全评价系统已在世界上得到广泛应用,国际桥梁协会于2003年7月在瑞士决定制订有关桥梁结构健康监测的国际规程,以指导和推动该项技术在各国的应用。

四、健康监测系统实施现状

随着现代传感技术、计算机及通讯技术、信号分析及处理技术及结构振动分析理论的迅速发展,大型桥梁结构健康监测及状态评估近年来已成为国内外工程界和学术界关注的热点。

桥梁结构健康监测及安全评价系统总的目标是通过测量反映大桥环境激励和结构响应状态的某些信息,实时监测大桥的工作性能和评价大桥的工作条件,以保证大桥的安全运营及为大桥的养护维修提供科学依据。

及传统的桥梁监测方法(包括众多的无损检测技术)不同,桥梁结构健康监测及安全评价系统重在诊断可能发生结构损伤或灾难的条件和环境因素,评估结构性能退化的征兆和趋势,以便及时采取养护维修措施。

而传统的检测方法重在损伤发生后检查损伤的存在并采取维修加固的手段,因此,桥梁结构健康监测及安全评价系统的概念具有革命性的变革。

通过对传感器的革新和自动远程监控技术的更新换代,桥梁结构健康监测及安全评价系统正向简单易装、经济可行、持久可靠的方向发展,并已在世界许多大桥得到应用。

表1列出了世界上安装监测系统的部分桥梁,其中阳逻长江大桥、北京清河桥以及南宁大桥为我院承接,表2、表3为传感器装备情况,表4为健康监测系统投资情况。

表1 安装健康监测系统的部分桥梁

桥梁名称

结构类型

跨度(米)

位置

昂船洲桥

斜拉桥

1018

中国香港

西部通道

210

汀九桥

127+448+475+127

汲水门桥

160+430+160

南京二桥

628

中国

徐浦大桥

590

Skarsundet

240+530+240

挪威

RamaIX

166+450+166

泰国

Jindo

70+344+70

韩国

NewHaengJu

160+120+100

柜石岛桥

700

日本

多多罗桥

890

Normandie桥

856

法国

大佛寺桥

198+450+198

南京三桥

257+648+257

杭州湾跨海桥

448

芜湖桥

180+312+180

清河桥

108+66+36

润扬桥

斜拉桥/悬索桥

406/1490

江阴桥

悬索桥

1388

虎门桥

888

阳逻桥

1280

青马桥

455+1375+300

明石桥

960+1991+960

南备赞濑户桥

274+1100+274

GreatBelt桥

535+1624+535

丹麦

Namhae桥

128+404+128

Yeongjing桥

505

菜园坝

钢箱系杆拱

102+420+88

钱江四桥

钢管拱桥

2

190+7

89

卢浦桥

全钢拱桥

550

南宁桥

蝴蝶拱桥

300

CommodoreBarry桥

钢桁架桥

501

美国

HAM42-0992

连续梁

17+24+17

石板坡桥

连续刚构

330

Taylor桥

简支梁

5

33

加拿大

表2 国内部分桥梁健康监测系统传感器

传感器

西

风速仪

24

7

6

4

8

温度计

488

118

1

32

137

64

93

振动

30

28

173

56

位移计

12

38

应变计

18

20

132

振弦式应变仪

140

40

光纤传感器

760

96

磁感应传感器

42

水平仪

9

车轴车速仪

GPS

10

14+2

7+1

14

EM测力

36

倾角仪

全站仪

12+2

电子测距

1/16

摄像仪

16

腐蚀

162

22

气压计

3

湿度计

雨量计

表3 国外部分桥梁健康监测系统传感器

桥名

明石

大桥

柜石

岛桥

GreatBelt

Taylor

201+1

加速度计

27

23

17

焊接式

应变仪

18+4

26

振弦式

148

65

速度计

2+1

表4部分桥梁健康监测系统投资

桥名

桥型

时间

系统投资

青马大桥

1997

2000万英镑

0万人民币

2004

1130万人民币

阳逻大桥

2006

1001万人民币

菜园坝大桥

2007

880万人民币

清河大桥

255万人民币

南宁大桥

2008

420万人民币

鄂东桥

926

1300万人民币

五、健康监测系统应用效果及存在问题

从桥梁健康监测系统实践应用效果来看,建立健康监测系统的大桥,基本上能够实时获得桥梁结构应力、变形以及变位等参数,用以实时评估桥梁实际工作状态和预测桥梁功能变化,给管理部门及时作出合理维修策略提供重要依据。

有的监测系统准确记录了大桥经历船撞击等突发情况下的响应,并判断出大桥是否因此而损坏,使管理部门作出了准确而及时的决策反应。

桥梁健康监测系统是一个正在逐渐被学术界和工程界广泛接受并应用的新课题,在目前的实际工程应用实践中,尚存在一些比较普遍的问题:

(i)缺乏统一标准,系统规模差异性较大,有的系统安装了上千个传感器,有的系统则仅安装了几十个传感器;

(ii)传感器选型及布设合理性有待商榷。

部分传感器精度或耐久性不够,有的测点布置不合理,由于有些桥梁健康监测系统并不是由桥梁专业人员设计,或者这些设计者缺乏丰富的桥梁检测及评估经验,使得其测点的布设不甚合理,导致目前桥梁监测系统测点布置规模差异性较大,造成投资浪费或关键数据缺失;

(iii)健康监测系统本身的使用寿命难以得到保证,传感器寿命和传输线路长期使用是否畅通是影响到监测系统使用寿命的关键;

(iv)环境影响及测量噪声难以完全消除,降低了监测数据的可靠性。

测量数据的不完整性,给分析带来困难;

(v)有些大桥的健康监测系统获取了海量数据,但是未有效及时的处理,分析人员缺乏足够的桥梁知识,造成数据灾难;

(vi)桥梁健康状况评价体系不完备。

有些桥梁监测系统虽然监测到了大量数据,但是由于评估理论本身不完善及部分桥梁健康监测系统评估模块的建立缺乏有经验的桥梁评估专业人员,使得监测到的有效数据未能有效应用于桥梁状况评估之中;

(vii)理论及实践及相关系统的有机结合需要加强。

健康监测领域涌现了大量的研究论文,但目前有些理论并不能有效应用于工程实践;

健康系统由许多子系统组成,如何将这些子系统更有效的结合起来进行评估需要进一步研究。

六、健康监测系统改善建议及发展前景

针对目前桥梁检测系统出现的问题,我们有必要加强研究,更进一步优化监测技术、完善健康监测以及安全评价理论。

结合我公司长期从事桥梁研究的实际经验,我们提出一些健康监测系统的改善建议,以做到在现有技术水平的基础上,设计出功能全面、性能优良、稳定耐久、经济合理的切合大桥管理实际维护要求的桥梁健康监测及安全评价系统。

(i)采用健康监测系统及传统检查方法相结合进行大桥管理维护的新策略,发展数字电子管养系统。

建立好大桥健康监测系统后,理论上只需一台可以上网的电脑,就可以在世界任何地方对大桥的工作状况了如指掌。

当然,实时健康监测系统虽可为桥梁评估提供即时客观的依据,但一方面由于资源、成本等方面的限制,就目前情况而言,传感器系统不可能涵盖大桥的所有构件。

此外,由于现阶段对大型桥梁在复杂环境下的响应的认识及经验的限制,也会导致对某些关键性部位监测不足。

因此,在现有的技术水平下,要避免完全依赖健康监测系统的进行桥梁工作状态评估的思想,应该适当及传统的检查方法结合对大桥进行管理维护。

健康监测系统主要负责全桥整体工作性能、及桥梁安全直接相关的关键点的监测以及突发事件的报警,从总体上把握全桥的工作状态,而传统检查方法应及健康系统结合一起对某些局部位置进行检查。

如果能将桥梁人工检查及先进健康监测系统有机的结合起来,那么现存检测方法中的许多不足之处可有效消除。

桥梁管理维护的新策略如图2所示,它综合了传统的人工检查方法及现代监测技术的长处。

图2现代桥梁维护策略

健康监测系统在桥梁维护管理中的作用是根据传感器系统的测量值或其衍生量对桥梁整体及局部作出合理评估。

其中,评估式维护工作指对桥梁构件的不正常表现作出即时诊断并找出其根源。

预测性维护旨在及早发现灾难性破坏的隐患,以便能采取措施加以消除或最低程度对其进行控制和延缓。

从这个意义上说,完整的大桥健康记录对大跨度桥梁的健康状态作出明确清晰的预测评估是十分重要的。

预防性维护通过定期的现场检查来落实,由目测或借助某些仪器对那些尚不明晰的问题进行记录分析,例如腐蚀、徐变等。

当检测出桥梁有损伤发生时,就需要对其进行加固,这是显然的。

在大桥整个设计使用寿命内,在确保大桥安全可靠运营前提下,使维护管理保持在相对较低的稳定水平,这是引进结构健康监测及安全评估系统的终极意义之所在。

(ii)充分利用好健康监测系统初期数据。

从当前实际应用的桥梁健康系统来看,健康监测系统本身的使用寿命难以保证,而在大桥投入使用初期健康监测系统各子系统工作状况较好,因此,我们认为应该充分利用这段时间实时健康监测系统所监测的结果,建立起大桥健康工作状态的数据库,为以后的损伤识别和评估提供强有力的依据,且通过这段时间的监测数据进行统计分析,找准桥梁各构件的变化趋势,建立起精确可靠的预测模式,为制定长期稳定的检查维护计划作准备。

(iii)保证关键测点数据的长期正常采集。

桥梁健康系统工作若干年后,一般都会有一个系统老化的问题,部分传感器和传输线路不能正常工作,造成数据不能正常采集。

切合当前实际情况,我们的思路是系统运行若干年后,要保证及桥梁安全直接相关的关键点仍然能正常运行,这些关键点是通过桥梁结构分析、实桥经验以及前期健康监测数据确定,在这些关键点选择耐久性好且易于更换的传感器,以确保该点数据的长期正常采集。

(iv)合理的选择及使用传感器。

从目前健康监测系统的传感器使用状况来看,有的传感器耐久性不够,使用一段时间后便停止工作。

通过对传感器的革新,目前传感器的耐久性已得到很大的提高,因此有了更多的选择余地,对于耐久性好和易更焕的传感器应优先选用;

此外,制定科学的采集策略如定时采集和触发采集,以延长传感器的使用寿命。

(v)合理的布置测点。

测点的布置应遵循“安全优先、整体优先、静力优先、初值优先”的基本原则。

测点布设方案设计者必须对桥梁结构特点非常熟悉,且有丰富的桥梁检测和评估经验,这样才能把测点设在最合理最关键的位置,从而避免投资浪费和重要数据缺失。

(vi)选择最佳的测点布置时机。

目前有些桥梁健康监测系统往往在大桥建成后布设测点,有的在大桥运行一段时间后意识到其重要性后布设,有的则在出现裂缝或其它损伤后再进行测点布设,我们认为最佳的时间是在施工阶段阶段就进行测点布设。

在施工阶段即进行测点布设的健康监测系统工作状况较好、可靠性更高、发挥的实际效应更佳。

从研究现状和实际应用来看,健康监测系统的评估内容基本统一、评估理论日趋成熟。

通过对传感器的革新和自动远程监控技术的更新换代,桥梁结构健康监测及安全评价系统正向简单易装、经济可行、持久可靠的方向发展,并已在或将在包括江阴大桥、南京三桥、润扬大桥、苏通大桥以及阳逻长江大桥在内的世界许多大桥中得到应用。

从发展趋势来看,随着测控技术的发展,健康监测成本相对降低,而特大、复杂桥梁结构的病害显得愈发突出,桥梁结构健康监测及安全评价系统已开始逐渐成为大桥建设工程的一部分,正在兴建的湖北鄂东大桥、香港昂船洲大桥以及深圳西部通道大桥结构健康监测系统均在进行设计规划。

鄂东大桥将投资1300万用以建立大桥的实时健康监测系统,而包含大约1271个各类传感器的昂船洲大桥结构健康监测系统将会是世界上最具规模的大桥实时监测系统。

可以预计,桥梁结构健康监测及安全评价系统将在桥梁管理中发挥越来越大的作用,一个桥梁数字化时代正在来临。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2