整联蛋白结构与信号转导机制.docx

上传人:b****3 文档编号:5319534 上传时间:2023-05-08 格式:DOCX 页数:9 大小:23.32KB
下载 相关 举报
整联蛋白结构与信号转导机制.docx_第1页
第1页 / 共9页
整联蛋白结构与信号转导机制.docx_第2页
第2页 / 共9页
整联蛋白结构与信号转导机制.docx_第3页
第3页 / 共9页
整联蛋白结构与信号转导机制.docx_第4页
第4页 / 共9页
整联蛋白结构与信号转导机制.docx_第5页
第5页 / 共9页
整联蛋白结构与信号转导机制.docx_第6页
第6页 / 共9页
整联蛋白结构与信号转导机制.docx_第7页
第7页 / 共9页
整联蛋白结构与信号转导机制.docx_第8页
第8页 / 共9页
整联蛋白结构与信号转导机制.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

整联蛋白结构与信号转导机制.docx

《整联蛋白结构与信号转导机制.docx》由会员分享,可在线阅读,更多相关《整联蛋白结构与信号转导机制.docx(9页珍藏版)》请在冰点文库上搜索。

整联蛋白结构与信号转导机制.docx

整联蛋白结构与信号转导机制

整联蛋白结构与信号转导机制*

薛霜1,2,独军政1,赵建勇2,高闪电1,常惠芸1*

【摘要】摘要:

整联蛋白是一类α/β异源二聚体膜受体分子,通过细胞膜的双向信号转导作用以调节细胞分化、迁移、免疫、黏附等生物学功能。

整联蛋白能通过多种途径如黏附斑激酶、胞内-外离子浓度及结构域构象变化等介导细胞信号转导。

近年来,研究的焦点是整联蛋白如何通过构象的改变来调节细胞信号转导以及对配体的亲和力。

论文主要从分子水平上就整联蛋白结构和介导的信号转导机理进行了综述。

【期刊名称】动物医学进展

【年(卷),期】2010(031)001

【总页数】5

【关键词】关键词:

整联蛋白;构象;信号转导;配体;亲和力

整联蛋白是广泛分布于细胞表面的跨膜糖蛋白,是一类重要的细胞表面受体。

它作为介导信号传递的膜分子通过独特的途径转导信号,调节细胞的各种生物学功能。

整联蛋白是由α和β两个非共价结合的跨膜亚基组成的异源二聚体,α和β亚基均有长的胞外区、跨膜区和短的胞质区组成(只有β4亚基有长的胞质区)[1]。

由于它的胞外区和胞质区分别与细胞外基质和细胞骨架相连,因此对胞内外间的信号传递具有重要作用。

整联蛋白主要通过构象及细胞骨架的改变、黏附斑激酶(focaladhesionkinase,FAK)和其他酪氨酸激酶的磷酸化、胞内外离子浓度变化等途径引发一系列的信号转导通路。

近年来,通过对整联蛋白结构域的构象研究发现,闭合折叠构象的整联蛋白对配体的亲和力较低,而伸展状的亲和力较高。

配体也可诱导构象的重排使整联蛋白变为伸展状,从而提高其对配体的亲和力。

1整联蛋白的结构

整联蛋白是一类由18种不同的α亚基与8种β亚基形成的约24种αβ异源二聚体复合物,研究显示,其结构类似于一个“头”连着两条“腿”。

α、β链均为Ⅰ型跨膜蛋白,由胞外区、跨膜区、胞质区(胞内区)组成,胞质区一般较短,可能和细胞骨架相联,α和β链的氨基末端形成的球形区域部分为胞外配体结合域[2]。

研究表明,整联蛋白的α和β亚基均含有由约700个~1000个氨基酸构成的胞外区和胞质区,α亚基由“Ⅰ结构域”、“β-Propeller”、“Thigh”、“Calf-1”、“Calf-2”构成的胞外功能区和1个胞质区构成。

有9种不同的α亚基(αD、αE、αL、αM、αX、α1、α2、α10、α11)含有Ⅰ结构域,当Ⅰ结构域呈现在α亚基上时便出现配体的结合位点,而当α亚基(α3、α4、α5、α6、α7、α8、α9、αv、αⅡb)不存在Ⅰ结构域时,则由α亚基的β-propeller结构域与β亚基的Ⅰ结构域构成配体的结合位点。

β亚基(β1-β8)包含有8个胞外区即:

“Ⅰ结构域”、“Hybrid”、“PSI”、4个“EGF-like”和“β-尾部”构成的胞外功能区以及一个长短不一的胞质区[3]。

β亚基和部分α亚基上的Ⅰ结构域具有一个由5个氨基酸组成的依赖金属离子的吸附位点(metaliondependentadhesionsite,MIDAS),其位于具有调节作用的钙离子结合位点附近,Mg2+、Mn2+、Ca2+均可与MIDAS相互作用导致整联蛋白结构域构象的改变,从而导致其与配体的吸附或解离[4]。

2整联蛋白介导的信号转导机制

2.1整联蛋白构象变化介导的信号转导

整联蛋白的构象根据其与配体亲和力的大小可分为低亲和力、高亲和力和中间亲和力3种形式,整联蛋白通过胞内外结构域构象的改变调节胞质膜的双向信号转导。

根据胞外球状结构域构象的改变,整联蛋白可分为αⅠ结构域型和αⅠ结构域缺失型两种类型。

目前普遍认为高亲和力和中间亲和力的整联蛋白的胞外结构域处于伸展状态,以致球状结构域能吸附配体,而低亲和力的整联蛋白处于折叠状态,因而其球状结构域不能吸附配体。

整联蛋白胞质区尾部结构域的解偶联和构象改变,导致整联蛋白异源二聚体的构象处于伸展状态,并激活胞外区球状结构域的配体结合位点,通过跨膜结构域介导信号转导。

2.1.1αⅠ结构域缺失型整联蛋白整联蛋白β亚基有非常紧密的结构,Ⅰ结构域插入于hybrid结构域内,而hybrid结构域插入于PSI结构域内,这些结构域在整联蛋白介导的信号传导过程中具有重要作用[5]。

βⅠ结构域首先发现于整联蛋白αvβ3的胞外区,βⅠ结构域的结构与αⅠ结构域具有相似性。

αⅠ结构域缺失型整联蛋白中βⅠ结构域可直接与配体结合或间接调节整联蛋白与配体的结合。

相比于低亲和力的构象,具有高亲和力构象的βⅠ结构域存在α1、α7单环和β1-α1、β6-α7环的协调运动。

整联蛋白-配体复合物的结构分析显示,整联蛋白的MIDAS和配体的一个羧化物之间存在一个配位键[6]。

β6-α7环上Met-335主链的羰基能与低亲和力MIDAS的Ca2+配位,使MIDAS的金属离子转移,β1-α1环上的残基与MIDAS的金属离子配位,从而重排配体结合位点以提高对配体的亲和力。

α1-螺旋、β6-α7环与α7-螺旋的运动紧密相关,α7-螺旋的下移使得配体结合位点向高亲和力的构象转变,从而能提高对配体的结合力,介导配体结合位点与其他结构域之间的信号转导[5,7]。

hybrid结构域的运动与α7-螺旋的运动相偶联,hybrid结构域拉动α7-螺旋向下运动。

因此,α7-螺旋在运动过程中的不同中间状态导致了整联蛋白的各种不同的亲和力构象状态。

高亲和力βⅠ结构域上α7-螺旋的移位可导致结构域的构象重排,从而使hybrid结构域发生移位。

相对低亲和力的构象,hybrid结构域摆动约60度角,导致α和β亚基的膝部分开约70度角[5]。

在头部结构域处于闭合和开放的构象重排过程中,hybrid/PSI结构域的接合位点不发生变化。

研究表明,PSI和I-EGF1结构域的紧密结合能使hybrid和PSI/IEGF1结构域作为一个整体单位移动[8]。

一些具有活性的抗体可与PSI结构域结合,同时能诱导高亲和力的构象[9]。

β亚基的膝部位于PSI/IEGF1和I-EGF2结构域之间,而α亚基的膝部是一个位于thigh和calf-1结构域之间的钙离子结合环[10]。

大量的研究证实整联蛋白结构域的伸展和hybrid结构域的摆动在整联蛋白激活中具有重要作用。

2.1.2αⅠ结构域型整联蛋白αⅠ结构域型整联蛋白的晶体结构具有3种不同的构象,分别是闭合的、中间的和开放的,其相互间的差别是残基与MIDAS的配位、周围环状结构和β6-α7环及α1、α7-螺旋的位置不同。

目前通过研究αⅠ结构域型整联蛋白的晶体结构还不能确定αⅠ结构域在整联蛋白胞外区结构域的具体位置,此结构域可能位于propeller结构域的2和3-片层之间并与βⅠ结构域相互作用。

αⅠ结构域是βⅠ结构域的内源性配体:

α7-螺旋的谷氨酸C-末端能与βⅠ结构域MIDAS的金属离子配位,当αⅠ结构域处于开放状态时,具有高亲和力。

活性βⅠ结构域能使αⅠ结构域的构象改变使其处于高亲和力状态,随后通过MIDAS结合外源型配体[11]。

同αⅠ结构域缺失型整联蛋白相比,αⅠ结构域型整联蛋白的构象调节需要从βⅠ结构域到αⅠ结构域的变构效应传导过程。

分子动态学研究发现中间状态的构象是αⅠ和αMⅠ结构域从闭合状态到开放状态的变化过程,研究证实中间状态的构象对整联蛋白亲和力具有重要的调节作用[12]。

整联蛋白αXβ2和αLβ2的电镜研究显示,αⅠ结构域相对于β-propeller结构域位置的变化类似于βⅠ结构域与hybrid结构域之间的位置变化。

在活性状态下,αⅠ结构域α7-螺旋的下移使保守的Glu残基作为内源性配体与βⅠ结构域的MIDAS相结合[13]。

YangW等[14]发现若αL亚基Glu-310残基或β2亚基MIDAS的Ala-210或Tyr-115残基突变为Cys能导致Ⅰ结构域失活,然而αL-E310C与β2-A210C或β2-Y115C形成的二硫键同时突变时则能激活配体结合,且二硫化物突变体的激活易受结合在Ⅰ结构域α7-螺旋之下的小分子颉颃物以及特异性抗体的影响。

这项研究为αL亚基的Glu-310残基与β2亚基MIDAS相互激活作用提供了直接的证据,暗示α7-螺旋及其连接体可以作为更好的整联蛋白结构域激活研究模型。

2.1.3整联蛋白胞质区和跨膜区的构象变化近年来,也有胞质区和跨膜区整联蛋白激活机制的相关研究见于报道,整联蛋白“腿”部的分离导致了整联蛋白的激活,暗示了跨膜区和胞质区结构域的构象变化可使整联蛋白稳定于低亲和力的状态。

整联蛋白α和β亚基的跨膜区结构域约含25个~29个氨基酸,比典型的Ⅰ型膜蛋白的跨膜区结构域长约3个~5个氨基酸残基。

它们含有一个保守的Trp-Lys/Arg二肽,能提供一个可变的胞质区锚锭结构[15]。

糖基化试验研究整联蛋白跨膜区结构域显示突变或缩短跨膜区结构域均能激活整联蛋白,非活性的α/β亚基的跨膜区结构域能通过静电吸附和胞质区的疏水作用变长、倾斜或相互接触。

踝蛋白能吸附分离的α/β亚基尾部结构,导致尾部结构域和跨膜区的分离,缩短跨膜区并激活胞内-外整联蛋白的结构域[16]。

荧光共振能量转移(fluorescenceresonanceenergytransfer,FRET)研究显示,静止状态的整联蛋白α和β亚基胞质区结构域彼此相互靠近,但在G蛋白偶联受体、裸蛋白头部结构域及配体等诱导的内-外信号传导过程中会发生明显的空间分离[17]。

核磁共振(nuclearmagneticresonance,NMR)研究整联蛋白胞质区尾巴结构显示α和β亚基胞质区结构域的结合是微弱的,这与已报道的相关的胞质区结构具有显著的差别[18]。

NMR研究也显示了踝蛋白头部结构域和丝蛋白是如何与整联蛋白β亚基的胞质区结合以及如何激活整联蛋白的[19]。

整联蛋白处于静止状态时,在α和β亚基跨膜区结构域之间有一个特殊的α-螺旋结构。

整联蛋白激活后,两个跨膜区结构域彼此分离但构象不变,而分子内二硫键的引入可阻断胞质区突变的激活效应[20]。

研究发现α和β亚基跨膜区结构域的分离并不能使整联蛋白激活,但可以发生于吸附多价配体后[21]。

因此,大量的研究表明整联蛋白通过胞质膜的双向信号转导依赖于胞外区的构象变化以及跨膜区和胞质区之间的打开和分离。

这些发现均是基于非选择性的突变分析,目前仍不清楚天然的整联蛋白结构域胞质区单环的分离所引起的胞外区结构域构象变化的机制[22]。

有关整联蛋白跨膜结构域介导的细胞双向信号转导机制还有待于进一步的深入研究。

2.2整联蛋白介导的其他信号转导途径

2.2.1对FAK的激活FAK是一种非酪氨酸激酶受体,是整联蛋白介导的信号转导通路的基础性信号传导分子。

FAK含有6个酪氨酸蛋白酶激活位点作为多种蛋白或催化酶结构域的吸附位点,磷酸化可促进它与其它信号分子的连接,提高其催化能力等。

酪氨酸磷酸化的主要位点是Tyr397[23]。

FAK含有N-和C-末端区,中间结构域是一个内在的催化部位,N-末端区与受体酪氨酸激酶相互作用导致FAK在Tyr397上的磷酸化作用。

整联蛋白可活化FAK,当一些细胞系与细胞外基质(extracellularmatrix,ECM),如纤维连接蛋白(fibronectin,FN)等粘连时,通过磷酸化酪氨酸位点和脯氨酸富集区诱导FAK磷酸化,活化FAK与多种细胞骨架蛋白、磷脂酰肌醇-3激酶(PI-3K)及多种衔接蛋白相互作用。

整联蛋白β1和β3亚基的交联可活化FAK,其中血纤维蛋白原和整联蛋白αⅡbβ3结合所诱导的FAK磷酸化,为血小板凝集所必需。

当缺乏整联蛋白αⅡbβ3时,FAK不能被磷酸化,从而导致血小板机能不全的疾病。

2.2.2对整联蛋白衔接激酶的激活ILK(Integrin-linkedkinase,ILK)是一种丝氨酸/苏氨酸激酶,广泛表达于细胞基质黏附因子上。

它的N-端结构域含有4个锚锭蛋白重复序列,介导吸附多种胞质蛋白。

ILK能结合整联蛋白β1、β2、β3亚基的胞质区尾巴结构进一步作用于α-actinin、F-actin、paxillin等细胞骨架蛋白。

其机制可能是ILK与整联蛋白β亚基结合后,以依赖PI-3k的激活方式,并通过磷酸化下游的底物蛋白激酶B(proteinkinaseB,PKB)、糖原合成酶激酶3(glycogensynthetasekinase3,GSK3)等使细胞外信号向下游传导,进而调控细胞的生长、分化、迁移等功能[24]。

2.2.3对胞内离子浓度的调节多种整联蛋白如α4β1、αLβ2、αVβ3等与配体结合后可引起胞内Ca2+浓度的变化,除一些整联蛋白外(如α2β1等),几乎所有的整联蛋白均能通过Na+/H+泵调节胞内H+浓度。

整联蛋白交联或与配体结合后可引起胞内自由Ca2+浓度的升高。

一些整联蛋白通过激活细胞膜K+通道活性,以调节赤癣白屑病细胞的分化和成纤维瘤细胞神经突的扩散,并诱发一系列的细胞内信号转导[25]。

此外整联蛋白所致Ca2+转移的信息传递机制还与不同的配体有关。

3小结与展望

整联蛋白具有多种结构域构象,并通过改变结构域的构象介导跨膜的双向信号转导以及与配体的特异性结合。

近年来,结构学、生物化学、生物物理学等研究方法的应用加深了对整联蛋白跨膜双向信号转导机制的理解,特别是αⅠ结构域缺失型整联蛋白与αⅠ结构域型整联蛋白在吸附配体过程中构象的差异性;中间活性构象在低活性整联蛋白转变为高活性整联蛋白过程中的作用;配体诱导整联蛋白构象改变的机制;跨膜及胞内结构域通过构象改变介导的跨膜双向信号转导机制等。

大家应该认识到整联蛋白是各种构象状态的动态平衡,而不是单一的将其作为一种特定的构象状态进行研究。

预测配体与整联蛋白结合的结构复杂性,有助于阐明多种配体所诱导的整联蛋白构象变化及信号转导作用。

有关整联蛋白介导的其他信号转导途经如黏附斑激酶、整联蛋白衔接激酶等在细胞信号转导过程中虽具有重要的作用,但这些信号转导途径直接或间接地与整联蛋白结构域的构象变化有关。

整联蛋白可与多种细胞外基质配体相互作用从而发挥多种重要的生物学功能。

如在损伤修复中,αvβ3与纤维蛋白及纤连蛋白结合,αvβ6与纤连蛋白、玻连蛋白及转化生长因子结合,可引起毛细血管增生,促进新生肉芽组织的形成[26]。

因而,研究整联蛋白介导的信号转导途径也有利于整联蛋白靶向药物的研究,从而干扰细胞增殖、迁徙或炎症的局限化、血管生成和肿瘤细胞增殖,最终发展同整联蛋白相关的治疗性药物以阻断整联蛋白介导的信号转导作用从而控制相关疾病。

参考文献:

[1]DeMelkerAA,SonnenbergA.Integrins:

alternativesplicingasamechanismtoregulateligandbindingandintegrinsignalingevents[J].Bioessays,1999,21(6):

499-509.

[2]LuoBH,CarmanCV,SpringerTA.Structuralbasisofintegrinregulationandsignaling[J].AnnuRevImmunol,2007,25(6):

619-647.

[3]StewartPL,NemerowGR.Cellintegrins:

commonlyusedreceptorsfordiverseviralpathogens[J].TrendsMicrobiol,2007,15(11):

500-506.

[4]WegenerKL.Structuralbasisofintegrinactivationbytalin[J].Cell,2007,128

(1):

171-182.

[5]XiaoT,TakagiJ,CollerBS,etal.Structuralbasisforallosteryinintegrinsandbindingtofibrinogen-mimetictherapeutics[J].Nature,2004,432(7013):

59-67.

[6]TuguluaS,SilaccibP,StergiopulosN,etal.RGD-Functionalizedpolymerbrushesassubstratesfortheintegrinspecificadhesionofhumanumbilicalveinendothelialcells[J].Biomaterials,2007,28(16):

2536-2546.

[7]ArnaoutMA,GoodmanSL,XiongJP.Structureandmechanicsofintegrin-basecelladhesion[J].CurrOpinCellBiol,2007,19(16):

495-507.

[8]ShiM,SundramurthyK,LiuB,etal.Thecrystalstructureoftheplexin-semaphorin-integrindomain/hybriddomain/I-EGF1segmentfromthehumanintegrinβ2subunitat1,8-Aresolution[J].JBiolChem,2005,280(34):

30586-30593.

[9]MouldAP,TravisMA,BartonSJ,etal.Evidencethatmonoclonalantibodiesdirectedagainsttheintegrinβsubunitplexin/semaphorin/integrindomainstimulatefunctionbyinducingreceptorextension[J].JBiolChem,2005,280(6):

4238-4246.

[10]XieC,ShimaokaM,XiaoT,etal.TheintegrinαsubunitlegextendsataCa2+-dependentepitopeinthethigh/genuinterfaceuponactivation[J].ProcNatlAcadSciUSA,2004,101(43):

15422-15427.

[11]ShimaokaM,XiaoT,LiuJH,etal.StructuresoftheαLIdomainanditscomplexwithICAM-1revealashape-shiftingpathwayforintegrinregulation[J].Cell,2003,112

(1):

99-111.

[12]JinM,AndricioaeiI,SpringerTA.ConversionbetweenthreeconformationalstatesofintegrinIdomainswithaC-terminalpullspringstudiedwithmoleculardynamics[J].Structure,2004,12(12):

2137-2147.

[13]AlonsoJL,EssafiM,XiongJP,etal.DoestheintegrinαAdomainactasaligandforitsβAdomain[J].CurrBiol,2002,12(10):

R340-342.

[14]YangW,ShimaokaM,SalasA,etal.Intersubunitsignaltransmissioninintegrinsbyareceptor-likeinteractionwithapullspring[J].ProcNatlAcadSciUSA,2004,101(25):

2906-2911.

[15]StefanssonA,ArmulikA,NilssonI,etal.DeterminationofN-andC-terminalbordersofthetransmembranedomainofintegrinsubunits[J].JBiolChem,2004,279(20):

21200-21205.

[16]PartridgeAW,LiuS,KimS,etal.TransmembranedomainhelixpackingstabilizesintegrinαⅡbβ3inthelowaffinitystate[J].JBiolChem,2004,280(8):

7294-7300.

[17]KimM,CarmanCV,SpringerTA.Bidirectionaltransmembranesignalingbycytoplasmicdomainseparationinintegrins[J].Science,2003,301(5640):

1720-1725.

[18]VinogradovaO,VaynbergJ,KongX,etal.Membrane-mediatedstructuraltransitionsatthecytoplasmicfaceduringintegrinactivation[J].ProcNatlAcadSciUSA,2004,101(12):

4094-4099.

[19]KiemaT,LadY,JiangP,etal.Themolecularbasisoflaminbindingtointegrinsandcompetitionwithtalin[J].MolCell,2006,21(3):

337-347.

[20]LuoBH,SpringerTA,TakagiJ.Aspecificinterfacebetweenintegrintransmembranehelicesandaffinityforligand[J].PLoSBiol,2004,2(6):

776-786.

[21]WeljieAM,HwangPM,VogelHJ.SolutionstructuresofthecytoplasmictailcomplexfromplateletαIIb-andβ3-subunits[J].ProcNatlAcadSciUSA,2002,99(7):

5878-5883.

[22]LuoBH,CarmanCV,TakagiJ,etal.Disruptingintegrintransmembranedomainheterodimerizationincreasesligandbindingaffinity,notvalencyorclustering[J].ProcNatlAcadSciUSA,2005,102(10):

3679-3684.

[23]WederellED,DeLonghRU.Extracellularmatrixandintegrinsignalinginlensdevelopmentandcat

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2