航空航天基础论文.docx

上传人:b****3 文档编号:5446635 上传时间:2023-05-08 格式:DOCX 页数:21 大小:110.73KB
下载 相关 举报
航空航天基础论文.docx_第1页
第1页 / 共21页
航空航天基础论文.docx_第2页
第2页 / 共21页
航空航天基础论文.docx_第3页
第3页 / 共21页
航空航天基础论文.docx_第4页
第4页 / 共21页
航空航天基础论文.docx_第5页
第5页 / 共21页
航空航天基础论文.docx_第6页
第6页 / 共21页
航空航天基础论文.docx_第7页
第7页 / 共21页
航空航天基础论文.docx_第8页
第8页 / 共21页
航空航天基础论文.docx_第9页
第9页 / 共21页
航空航天基础论文.docx_第10页
第10页 / 共21页
航空航天基础论文.docx_第11页
第11页 / 共21页
航空航天基础论文.docx_第12页
第12页 / 共21页
航空航天基础论文.docx_第13页
第13页 / 共21页
航空航天基础论文.docx_第14页
第14页 / 共21页
航空航天基础论文.docx_第15页
第15页 / 共21页
航空航天基础论文.docx_第16页
第16页 / 共21页
航空航天基础论文.docx_第17页
第17页 / 共21页
航空航天基础论文.docx_第18页
第18页 / 共21页
航空航天基础论文.docx_第19页
第19页 / 共21页
航空航天基础论文.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

航空航天基础论文.docx

《航空航天基础论文.docx》由会员分享,可在线阅读,更多相关《航空航天基础论文.docx(21页珍藏版)》请在冰点文库上搜索。

航空航天基础论文.docx

航空航天基础论文

 

航空航天知识概论

 

姓名:

xx

班级:

xxxx

学号:

xxxxxxx

专业:

xxxxxxxxx

 

摘要:

浩浩天地,朗朗乾坤,脚踏地面之实,头顶天空飘渺,无论在古今中外,无论是能人志士还是平民百姓莫不对我们头上的这一天空怀有敬畏之情。

而敬畏转变为好奇之时,人类的探索“头顶一方天”之旅也拉开了其序幕。

本文主要介绍有关航空航天知识的基本内容,全文共涉及航空航天发展史、飞机飞行原理、航空航天的发展现状。

 

关键词:

航空航天飞机飞行原理

 

目录

航空航天的发展历史2

飞行原理3

一飞行原理3

二、飞机的主要组成部队及其功用3

三、直升飞机构造及飞行原理5

四、飞机的操纵方式9

五、飞行的基本状态和复杂的特技动作10

飞行发展现状11

一、深空探测备受关注12

二、世界卫星技术稳步发展14

三、国际空间站艰难维护16

四、地球轨道探测器喜忧参半17

五、2005年深空探测仍是热点18

航空航天的发展历史

探索浩瀚的宇宙,是人类千百年来的美好梦想。

我国在远古时就有嫦娥奔月的神话。

公元前1700年,我国有"顺风飞车,日行万里"之说,还绘制了飞车腾云驾雾的想像图。

外国也有许多有关月亮的美好传说。

自从1957年10月4日世界上第一颗人造地球卫星上天以来,到1990年12月底,前苏联、美国、法国、中国、日本、印度、以色列和英国等国家以及欧洲航天局先后研制出约80种运载火箭,修建了10多个大型航天发射场,建立了完善的地球测控网,世界各国和地区先后发射成功4127个航天器。

其中包括3875个各类卫星,141个载人航天器,111个空间探测器,几十个应用卫星系统投入运行。

目前航天员在太空的持续飞行时间长达438天,有12名航天员踏上月球。

空间探测器的探测活动大大更新了有关空间物理和空间天文方面的知识。

到上世纪末,已有5000多个航天器上天。

有一百多个国家和地区开展航天活动,利用航天技术成果,或制定了本国航天活动计划。

航天活动成为国民经济和军事部门的重要组成部分。

航天技术是现代科学技术的结晶,它以基础科学和技术科学为基础,汇集了20世纪许多工程技术的新成就。

力学、热力学、材料学、医学、电子技术、光电技术、自动控制、喷气推进、计算机、真空技术、低温技术、半导体技术、制造工艺学等对航天技术的发展起了重要作用。

这些科学技术在航天应用中互相交叉和渗透,产生了一些新学科,使航天科学技术形成了完整的体系。

航天技术不断提出的新要求,又促进了科学技术的进步。

飞行原理

一飞行原理

飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。

机翼升力是怎样产生的呢?

这首先得从气流的基本原理谈起。

在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。

滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。

空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。

因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。

由此我们得出了流动空气的特性:

流管细流速快;流管粗流速慢。

这就是气流连续性原理。

实践证明,空气流动的速度变化后,还会引起压力变化。

当流体稳定流过一个管道时,流速快的地方压力小。

流速慢的地方压力大。

飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。

由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。

这样在机翼上、下表面出现了压力差。

这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。

其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。

当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。

飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。

这就是飞机能离陆升空并在空中飞行的奥秘。

二、飞机的主要组成部队及其功用

自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面六个主要部分组成,即:

机翼、机身、尾翼、起落装置、操纵系统和动力装置。

它们各有其独特的功用。

(一)机身

机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

(二)机翼

机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

飞机的机翼的变化

在飞机诞生之初,机翼的形状千奇百怪,有的像鸟的翅膀,有的像蝙蝠的黑翼,有的像昆虫的翅膀;有的是单机翼,有的是双机翼。

到第二次世界大战时,虽然绝大多数飞机"统一)到单机翼上来,但单机翼的位置又有上单机翼、中单机翼和下单机翼之分,其形状有平直机翼、后掠机翼、三角机翼、梯形机翼、变后掠角机翼和前掠角机翼之别。

(三)尾翼

尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼

垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼

水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

同样飞行员推杆时升降舵下偏,飞机低头。

超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。

飞行员推拉杆时整个水平尾翼都随之偏转。

飞行员用全动平尾来进行俯仰操纵。

其操纵原理与升降舵相同。

某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。

有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。

这时放在机翼前面的水平尾翼称为鸭翼或前翼。

也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。

现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。

(四)起落装置

起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。

着陆时还通过起落装置吸收撞击能量,改善着陆性能。

早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。

现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。

改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。

水上飞机的起落架由浮筒代替机轮。

(五)操纵系统(飞行控制系统)

飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。

早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。

现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。

(六)动力装置

飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。

采用推力矢量的动力装置,还可用来进行机动飞行。

现代的军用飞机多数为喷气式飞机。

喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。

另外还有直升飞机

三、直升飞机构造及飞行原理

构造简图

直升机的前飞

直升机的前飞,特别是平飞,是其最基本的一种飞行状态。

直升机作为一种运输工具,主要依靠前飞来完成其作业任务。

为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。

直升机的水平直线飞行简称平飞。

平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。

直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。

平飞时力的平衡

相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力X身及尾桨推力T尾。

前飞时速度轴系选取的原则是:

X铀指向飞行速度V方向;Y轴垂直于X轴向上为正,2轴按右手法则确定。

保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43)。

平飞时力的平衡

X轴:

T2=X身

Y轴:

T1=G

Z轴:

T3约等于T尾

其中Tl,T2,T3分别为旋翼拉力在X,Y,Z三个方向的分量。

对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩平衡,直升机稍带坡度角r,故尾桨推力与水平面之间的夹角为y,T尾与T3方向不完全一致,因为y角很小,即cosr约等于1,故Z向力采用近似等号。

平飞需用功率及其随速度的变化

平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由三部分组成:

型阻功率——P型;诱导功率——P诱;废阻功率——P废。

其中第三项是旋翼拉力克服机身阻力所消耗的功率。

  从上图可以看出,旋翼拉力的第二分力T2可平衡机身阻力X身。

对旋翼而言,其分力T2在X轴方向以速度V作位移。

显然旋翼必须做功,P=T2V或P废=X身V,而机身废阻X身在机身相对水平面姿态变化不大的情况下,其值近似与V的平方成正比,这样废阻功平飞需用功率随速度的变化

率P废就可以近似认为与平飞速度的三次方成正比,如上图中的点划线③所示。

平飞时,诱导功率为P诱=TV,其中T为旋翼拉力,vl为诱导速度。

当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度V的增大而减小,因此平飞诱导功率P诱随平飞速度V的变化如上图中细实线②所示。

平飞型阻功率尸型则与桨叶平均迎角有关。

随平飞速度的增加其平均迎角变化不大。

所以P型随乎飞速度V的变化不大,如图中虚线①所示。

图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。

它是一条马鞍形的曲线:

小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎飞需用功率仍然很大。

但比悬停时要小些。

在一定速度范围内,随着平飞速度的增加,由于诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下降趋势,但这种下降趋势随V的增加逐渐减缓。

速度继续增加则由于废阻功率随平飞速度增加急剧增加。

平飞需用功率随V的增加在达到平飞需用功率的最低点后增加;总的平飞需用功率随V的变化则呈上升趋势,而且变得愈来愈明显。

直升机的后飞

相对气流不对称,引起挥舞及桨叶迎角的变化

直升机的侧飞

侧飞是直升机特有的又一种飞行状态,它与悬停、小速度垂直飞行及后飞一起是实施某些特殊作业不可缺少的飞行性能。

一般侧飞是在悬停基础上实施的飞行状态。

其特点是要多注意侧向力的变化和平衡。

由于直升机机体的侧向投影面积很大,机体在侧飞时其空气动力阻力特别大,因此直升机侧飞速度通常很小。

由于单旋翼带尾桨直升机的侧向受力是不对称的,因此左侧飞和右侧飞受力各不相同。

向后行桨叶一侧侧飞,旋翼拉力向后行桨叶一例的水平分量大于向前行桨叶一侧的尾桨推力,直升机向后方向运动,会产生与水平分量反向的空气动力阻力Z。

当侧力平衡时,水平分量等于尾桨推力与空气动力阻力之和,能保持等速向后行桨叶一侧侧飞。

向前行桨叶一例侧飞时,旋翼拉力的水平分量小于尾桨推力,在剩余尾桨推力作用下,直升机向民桨推力方向一例运动,空气动力阻力与尾桨推力反向,当侧力平衡时,保持等速向前行桨叶一侧飞行。

四、飞机的操纵方式

千变万化的飞行动作都是在飞行员以杆、舵、油门为主的操纵下完成的。

主要有俯仰操纵、横侧操纵和方向操纵。

(一)俯仰转动

俯仰转动是通过飞行员前推或后拉驾驶杆,从而使升降舵面上偏或下偏来实现的。

如飞行员向后拉杆时,升降舵上偏,相对气流作用在升降舵面上,使整个水平尾翼产生一个向下的附加力,对飞机重心构成一个使机头上仰的操纵力矩,在这个力矩的作用下,飞机绕横轴做上仰运动。

当飞行员向前推杆时,升降舵向下偏转,相对气流作用在升降面上,在水平尾翼上产生一个向上的附加力,对飞机重心构成了使机头下俯的操纵力矩,飞机便绕横轴做下俯运动。

(二)横侧转动

横侧转动是通过飞行员在左右压杆,使左右机翼上的副翼发生偏转来实现的。

如飞行员向左压杆,左副翼上偏,右副翼下偏。

相对气流作用在左右副翼上,使左机翼产生向下的附加力,右机翼产生向上的附加力,对飞机重心构成左滚力矩,飞机便绕纵轴向左滚转。

相反,如果飞行员向右压杆,飞机右副翼上偏,左副翼下偏,对飞机重心构成右滚力矩,飞机便向右滚转。

(三)方向偏转

方向偏转是通过飞行员左、右蹬舵,使垂直尾翼上的方向舵左、右偏转来实现的。

如飞行员蹬左舵,方向舵左偏,相对气流作用在方向舵面上,使垂直尾翼上产生一个向右的侧力,对飞机重心构成了一个使机头左偏的方向操纵力矩,飞机向左发生偏转同样,飞行员蹬右舵,机头就会向右偏转。

当然,飞行员在做飞行动作时,不仅在于进行某种单一的操纵,而是几种操纵同时进行的。

如做特技飞行中的急上升转弯(战斗转弯)的动作时,飞行员不但要加油门向后拉杆,增加仰角,还要压杆增大坡度,同时还要蹬舵消除内侧滑,使飞机绕三轴同时转动。

可见,飞行远远不象我们看到的"自由翱翔"那么简单,飞机所呈现出的各种简单与复杂的飞行状态,都出自飞行员灵巧的双手和双脚。

五、飞行的基本状态和复杂的特技动作

(一)基本状态

1.平飞:

是最基本的飞行动作,通常是指飞机在等高、等速的条件下做水平直线飞行。

这时,飞机的升力(Y)与重力(G)平衡,拉力(P)与阻力(X)平衡,即:

Y=G、P=X。

当然,还有加速平飞和减速平飞,所不同的是:

加速平飞时P>X,而减速平飞时P<X。

2.上升:

飞机沿一条倾斜向上的轨迹所做的飞行(爬高)。

上升轨迹与水平面的夹角称上升角。

上升分等速和变速上升。

3.下滑:

飞机沿向下的倾斜轨迹所做的飞行称下滑。

下滑轨迹与水平面之间的夹角,叫下滑角。

下滑分加速下滑(迅速下降高度)、减速下滑(着陆阶段)和等速下滑。

4.侧滑:

飞机对称面与相对气流方向不一致的飞行称侧滑。

飞行中,飞行员只蹬舵,不压杆,或只压杆不蹬舵,都会使飞机产生侧滑。

相对气流与飞机对称面之间的夹角叫侧滑角。

这是几种最基本的飞行状态,飞行学员在最初的"起落航线"阶段就会遇到。

(二)起落航线飞行

所谓起落航线飞行,就是在机场上空周围按规定的高度、速度和预定的转弯点组成五边(或四边)航线进行起飞着陆的飞行。

要求飞行员在有限的时间内,完成观察座舱内外的各种信息变化,并及时操纵以保持正确数据;目测判断和修正飞机的状态、飞行高度、速度及前后机距离;完成收放起落架和襟翼动作等。

分起飞上升、航线建立和下滑目测着陆等阶段。

1.起飞:

是指飞机从开始滑跑到离陆并上升到一定的高度(通常为25米)和达到一定速度的过程。

正常起飞分三点滑跑、两点滑跑、离陆、小角度上升和上升5个阶段(图1-27)。

高速飞机由于发动机功率大,离陆后可不经过小角度上升而直接进入上升阶段。

2.着陆:

是指飞机从一定的高度下滑并降落于跑道,直到停止滑跑,脱离跑道(滑出跑道)的过程。

通常分为下滑、拉开始、拉平、平飘、接地和着陆滑跑6个阶段。

一般飞机的着陆速度比起飞离陆速度大,为了缩短着陆滑跑矩离,高速飞机落地时除了使用刹车减速装置外,还使用着陆减速伞,作用在于缩短滑跑距离。

(三)特技飞行

飞行员操纵飞机按一定的动作形式和轨迹做高度、速度、方向和状态不断变化的飞行叫特技飞行。

它是歼击机飞行员的必修课目。

是充分发挥飞机性能,利用各种飞行动作进行空中机动以有效地攻击敌方并避开敌方攻击的重要手段。

特技有简单特技、复杂特技和高级特技之分。

简单特技主要动作有:

盘旋、俯冲、横滚、跃升、急上升转弯等。

复杂特技有:

最大允许坡度盘旋(大坡度盘旋)、半滚倒转、斤斗、半斤斗翻转、斜斤斗等(图1-30)。

高级特技有:

上下横"8"字、竖"8"字、草花形斤斗、双上升转弯、上升横滚、跃升盘旋、翻转横滚、多次上升横滚和多次下滑横滚等。

(四)超机动能力

超机动能力是从1989年苏-27战斗机表演了"眼镜蛇"机动动作后开始出现的飞行新概念,这是一个全新的、非常规的机动动作。

"眼镜蛇"机动简单的说是一个低速、大迎角机动,飞机能够在2.5秒之内使俯仰角变化90度到100度。

而且在整套动作中飞机没有任何失控趋势的动作。

"眼镜蛇"机动说明,苏-27已具有很好的上仰操纵能力,动、静态横侧稳定性和操纵性,以及良好的下俯控制能力。

由于苏-27的良好飞行性能,使它成为公认的第三代超音速战斗机的优秀代表,与美国的F-16和F-15并驾齐驱。

继苏-27之后,苏霍伊飞机设计局又推出苏-37战斗机。

苏-37是在苏-27M战斗机基础上发展的型号,其外形与苏-27很相似。

该机不仅能够作"眼镜蛇"机动,而且还可以在"眼镜蛇"机动动作后接一个360度的滚转、尾冲,在垂直平面内作360度转向的圆形机动,高速盘旋时可以大角度攻击目标,甚至可以在大迎角情况下以接近零速的状态下飞行。

因此,苏-37被称为当今超机动性或超高机动性战斗机。

苏-37为什么有这么好的机动特性,主要是因为它装备了一种功能独特的动力装置,即两台AL-37FU涡轮风扇发动机。

这种发动机不但推重比大,可为战斗机提供强劲的飞行动力,而且采用了先进的转向喷口设计,使飞机具有推力矢量控制能力,可实现超常的高难度机动飞行。

超机动能力是对战斗机机动性能提出的新的更高的要求,但是有些非常规机动的实用价值如何,目前还较大争议。

飞行发展现状

据相关统计,截至2004年12月26日,世界上进行了数十次成功的航天发射。

尽管受到2003年一些事故的影响,但2004年仍是世界航天技术发展的重要一年。

虽然欧洲的“猎兔犬2号”登陆器于2003年年底在登陆火星时失踪,日本的“希望号”火星探测器也最终宣布失败,但伴随着2004年年初美国“勇气号”和“机遇号”在火星上的成功着陆,以及美国、欧盟等国家和地区相继推出了各自新的航天发展计划,人类对深空的探测再次掀起了热潮,深空控测技术将会得到长足发展。

至于国际空间站、各种用途卫星、地球轨道探测器等航天领域的技术发展则喜忧参半,一方面各种卫星技术仍是航天领域研究的热点,另一方面,由于2003年美国“哥伦比亚号”航天飞机的失事,给国际空间站的建设与维护带来了一定的困难,另外,美国宣布不再对“哈勃”天文望远镜进行维修,也为地球轨道探测器的发展带了一定的影响。

一、深空探测备受关注

2004年是世界深空探测收获颇丰的一年,除年初美国的“勇气号”和“机遇号”相继登陆火星令人振奋外,其他的一些深空探测计划也获得了很大的进展。

2004年1月,飞行已久的美国“星尘号”彗星探测器与“怀尔德2号”彗星交会,并在离彗核很近的距离用密度极低的氧化硅气溶胶首次获取彗核物质,现正在返回地球的途中,将实现人类首次把除地球的卫星——月球以外的样本送回地球。

2004年3月2日,欧空局发射了其第一个彗星探测器“罗塞塔”,该探测器将于10年后进入“楚留莫夫-格拉西门克”彗星轨道,并向该彗星释放着陆器,这在人类航天史上也是前所未有。

2004年7月1日,世界首个土星专用探测器“卡西尼”终于在飞行了7年后进入了土星轨道,目前已发回了许多宝贵土星图像,并在12月25日成功向“土卫六”表面释放“惠更斯”着陆器。

2004年8月3日,因天气原因推迟发射的美国“信使号”水星探测器成功升空,按计划该探测器将于2011年3月进入环水星轨道。

2004年11月15日,欧洲的“智慧1号”月球探测器经过13个月飞行也进入了绕月轨道,从而实现了世界首个联合使用太阳能电池推进系统和月球引力的空间探测器达到了预期的目标。

此外,2004年世界上几个主要的航天大国还相继推出了一系列新的深空探测计划,进一步将深空探测推向一个新的高潮。

(一)美国新航天计划目标宏大

2004年1月14号,美国总统布什在首都华盛顿的美国航空航天局(NASA)总部发表讲话,宣布美国未来的宏大航天发展计划。

该计划的主要内容包括:

2008年前发射无人探测器到月球;2010年前完成国际空间站,届时服役了30年的航天飞机也将退役;2014年前用名为“机组探测飞行器(CEV)”的新型载人飞行器进行载人航天飞行;2020年前重返月球并建立月球基地,以支持载人火星探索。

据估算,实现登上火星的目标,至少需要花费5000亿~6000亿美元,而据美国预算与政策研究中心的执行总监罗伯特.格林斯坦表示,布什的登月和登陆火星计划成本可能高达10000亿美元。

(二)欧洲“曙光”计划不甘示弱

2004年1月13日,虽然“猎兔犬2号”火星登陆器至今下落不明,但是欧洲空间局(欧空局)仍宣布推出了名为“曙光”的征服太空计划,该计划拟在2024年首先登陆月球,之后将于2030年造访火星。

该计划第一阶段(2005~2009年)的预算经费高达9亿欧元。

按照“曙光”计划,欧空局将有能力在2010年让其自行研制的探测器漫步火星。

目前,欧空局已经就“曙光”计划的第一阶段和工业界达成了合作协议。

欧空局计划于2007年发射一颗小型卫星,以测试如何才能将火星探测器连同火星土壤标本一起顺利收回地球,然后在2011~2014年间真正实现将火星岩石标本带回地球的目标。

(三)中国“探月工程”计划秩然有序

2004年2月25日,中国国防科学技术工业委员会组织召开了绕月探测工程领导小组第一次会议,宣布我国绕月探测工程从即日起正式进入实施阶段。

整个探月工程分为“绕”、“落”、“回”三个阶段。

第一阶段为2004~2006年,将研制和发射第一颗月球探测卫星,该卫星将绕月飞行,并将收集的探测数据传回地面。

第二阶段为2007~2010年,目标是研制和发射航天器,以软着陆的方式降落在月球上进行探测。

第三阶段为2011~2020年,目标是月球表面巡视探测与采样返回。

该阶段将分两期完成,前期(2011~2015年)主要研制和发射新型软着陆月球巡视车,后期(2015年后)主要研制和发射小型采样返回舱、月表钻岩机、月表采样器,机器人操作臂等,并将采集的样本送回地球,同时对着陆区进行考察,为下一步载人登月打下基础。

其中,第一阶段工程将投入14亿元人民币,第一颗名为“嫦娥一号”的卫星已于2004年完成样机设计,计划于2006年发射升空。

此外,在努

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2