变电站资料.docx

上传人:b****3 文档编号:5684338 上传时间:2023-05-09 格式:DOCX 页数:26 大小:110.26KB
下载 相关 举报
变电站资料.docx_第1页
第1页 / 共26页
变电站资料.docx_第2页
第2页 / 共26页
变电站资料.docx_第3页
第3页 / 共26页
变电站资料.docx_第4页
第4页 / 共26页
变电站资料.docx_第5页
第5页 / 共26页
变电站资料.docx_第6页
第6页 / 共26页
变电站资料.docx_第7页
第7页 / 共26页
变电站资料.docx_第8页
第8页 / 共26页
变电站资料.docx_第9页
第9页 / 共26页
变电站资料.docx_第10页
第10页 / 共26页
变电站资料.docx_第11页
第11页 / 共26页
变电站资料.docx_第12页
第12页 / 共26页
变电站资料.docx_第13页
第13页 / 共26页
变电站资料.docx_第14页
第14页 / 共26页
变电站资料.docx_第15页
第15页 / 共26页
变电站资料.docx_第16页
第16页 / 共26页
变电站资料.docx_第17页
第17页 / 共26页
变电站资料.docx_第18页
第18页 / 共26页
变电站资料.docx_第19页
第19页 / 共26页
变电站资料.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

变电站资料.docx

《变电站资料.docx》由会员分享,可在线阅读,更多相关《变电站资料.docx(26页珍藏版)》请在冰点文库上搜索。

变电站资料.docx

变电站资料

系统情况如下图

 

设计任务

1.负荷分析

2.主变压器的选择。

3.电气主接线的选择

4.短路电流计算(包括三相、两相、单相短路)

5.高压电气设备选择

6.继电保护配置

7.配电装置规划

电压

负荷

名称

每回最大负荷(kW)

功率

因数

回路数

供电

方式

线路长度(km)

 

35kV

市镇变1

6000

0.90

1

架空

15

市镇变2

7000

0.92

1

架空

8

煤矿变

4500

0.85

2

架空

10

化肥厂

4300

0.88

2

架空

7

砖厂

5000

0.85

1

架空

11

 

10kV

镇区变

1000

0.90

3

架空

5

机械厂

800

0.89

2

电缆

2

纺织厂1

700

0.89

1

电缆

3

纺织厂2

800

0.88

2

架空

7

农药厂

600

0.88

1

架空

4

面粉厂

700

0.90

1

架空

5

耐火材料厂

800

0.90

2

架空

2

负荷分类及定义 

1.一级负荷:

中断供电将造成人身伤亡或重大设备损坏,且难以挽回,带来极大的政治、经济损失者属于一级负荷。

一级负荷要求有两个独立电源供电。

2.二级负荷:

中断供电将造成设备局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。

二级负荷应由两回线供电。

但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。

3.三级级负荷:

不属于一级和二级的一般电力负荷。

三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。

三、35kV及10kV各侧负荷的大小

1.35kV侧:

∑P1=6000+7000+4500×2+4300×2+5000=35600KW

∑Q1=6000×0.48+7000×0.426+4500×0.62×2+4300×0.54×2

+5000×0.62=19186Kvar

2.10kV侧:

∑P2=1000×3+800×2+700+800×2+600+700+800×2=9800KW

∑Q2=1000×3×0.48+700×0.512+800×0.512×2+800×0.54×2+600×0.54+700×0.48+800×0.48×2=4909.6KVar

∑P=∑P1+∑P2=35600KW+9800KW=45400KW

∑Q=∑Q1+∑Q2=19186+4909.6=24095.6KVar

所以:

∑S=

=51398.0KVA

考虑线损、同时系数时的容量:

∑S2=51398.0×0.8×1.05=43174.3KVA

主变台数的确定

对于大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。

此设计中的变电所符合此情况,故主变设为两台。

主变容量的确定

1.主变压器容量一般按变电所建成后5—10年的规划负荷选择,并适当考虑到远期10—20年负荷发展。

对城郊变电所,主变压器容量应与城市规划相结合。

2.根据变电所所带负荷的性质和电网结构来确定主变压器的容量。

对于有重要负荷的变电所,应考虑到当一台主变压器停运时,其余变压器容量在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70%—80%。

此变电所是一般性变电所。

有以上规程可知,此变电所单台主变的容量为:

S=∑S2×0.8=43174.3×0.8=34539.48KVA

所以应选容量为40000KVA的主变压器。

主变相数选择

1.主变压器采用三相或是单相,主要考虑变压器器的制造条件、可靠性要求及运输条件等因素。

2.当不受运输条件限制时,在330KV及以下的发电厂和变电所,均应采用三相变压器。

社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。

主变绕组数量

在具有三种电压的变电所中,如通过主变压器各侧的功率均达到该变压器容量的15%以上,或低压侧虽无负荷,但在变电所内需装设无功补偿装备时,主变压器宜采用三绕组变压器。

根据以上规程,计算主变各侧的功率与该主变容量的比值:

高压侧:

k1=

=0.9>0.15

中压侧:

k2=

=0.7>0.15

低压侧:

k3=

=0.2>0.15

主变绕组连接方式

变压器的连接方式必须和系统电压相位一致,否则不能并列运行。

电力系统采用的绕组连接方式只有y和△,高、中、低三侧绕组如何要根据具体情况来确定。

我国110kV及以上电压,变压器绕组都采用Y0连接;35kV亦采用Y连接,其中性点多通过消弧线接地。

35kV及以下电压,变压器绕组都采用△连接。

主变中性点的接地方式

选择电力网中性点接送地方式是一个综合问题。

它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、变压器和发电机的运行安全以及对通信线路的干扰。

主要接地方式有:

中性点不接地、中性点经消弧线圈接地和直接接地。

电力网中性点的接地方式,决定了变压器中性点的接地方式。

电力网中性点接地与否,决定于主变压器中性点运行方式。

主变的调压方式

《电力工程电气设计手册》(电器一次部分)第五章第三节规定:

调压方式变压器的电压调整是用分接开关切换变压器的分接头,从而改变变压器变比来实现的。

切换方式有两种:

不带电切换,称为无励磁调压,调压范围通常在±5%以内,另一种是带负荷切换,称为有载调压,调压范围可达到±30%。

对于110kV及以下的变压器,以考虑至少有一级电压的变压器采用有载调压。

变压器冷却方式选择

主变一般的冷却方式有:

自然风冷却;强迫有循环风冷却;强迫油循环水冷却;强迫、导向油循环冷却。

小容量变压器一般采用自然风冷却。

大容量变压器一般采用强迫油循环风冷却方式

 

 电气主接线的初步设计及方案选择

电气主接线的概述

1.发电厂和变电所中的一次设备,按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。

它把各电源送来的电能汇集起来,并分给各用户。

它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。

所以电气主接线是发电厂和变电所电气部分的主体,对发电厂和变电所以及电力系统的安全、可靠、经济运行起着重要作用,并对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大影响。

在选择电气主接线时的设计依据

1)发电厂、变电所所在电力系统中的地位和作用

2)发电厂、变电所的分期和最终建设规模

3)负荷大小和重要性

4)系统备用容量大小

5)系统专业对电气主接线提供的具体资料

6~220kV高压配电装置的基本接线

有汇流母线的接线:

单母线、单母线分段、双母线、双母分段、增设旁母线或旁路隔离开关等。

无汇流母线的接线:

变压器-线路单元接线、桥形接线、角形接线等。

6—220KV高压配电装置的接线方式,决定于电压等级及出线回路数。

二、110kV侧主接线的设计

110—220kV配电装置出线回路数为3-4回时采用单母分段接线

高压侧采用单母分段接线有下列优点:

(1)供电可靠性:

当一段母线停电或故障时,不影响另一段母线供电;

(2)调度灵活:

各电源和各回路负荷可任意分配到某一段母线上;

(3)扩建方便:

任意方向扩建,不影响两段母线的电源和负荷均匀分配;

(4)便于实验:

个别回路可进行单独试验。

故110kV侧采用单母分段接线

10kV侧主接线的设计

10kV侧出线回路数为7回

由《电力工程电气设计手册》第二章第二节中的规定可知:

当6—10kV配电装置出线回路数为6回及以上时采用单母分段接线

此两种方案的比较

方案一110kV侧采用单母分段接线,供电可靠、调度灵活、扩建方便,10kV采用单母分段接线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。

方案二虽供电更可靠,调度更灵活,但与方案一相比较,设备增多,配电装置布置复杂,投资和占地面增大,而且,当母线故障或检修时,隔离开关作为操作电器使用,容易误操作。

短路电流的目的及结果

短路电流计算的目的

在变电所和发电厂的电气设计中,短路电流计算是一个重要环节。

计算的饿目的是选择主接线,比较各种接线方案;选择电气设备,校验设备提供依据,为继电保护整定计算提供依据等。

第六章 电气设备选择

电气设备选择的概述

选择的原则

1).应满足正常运行、检修、短路、和过电压情况下的要求,并考虑远景发展。

2).应按当地环境条件校核。

3).应力求技术先进和经济合理

4).与整个工程的建设标准应协调一致

5).同类设备应尽量减少种类

6).选用的新产品均应具有可靠的实验数据

设备的选择和校验。

1、电气设备和载流导体选择的一般条件

(1)按正常工作条件选择

A.额定电压:

所选电气设备和电缆的最高允许工作电压,不得低于装设回路的最高运行电压。

B.额定电流:

所选电气设备的额定电流

,或载流导体的长期允许电流

,不得低于装设回路的最大持续工作电流

计算回路的最大持续工作电流

时,应考虑回路在各种运行方式下的持续工作电流,选用最大者。

(2)按短路状态校验

A.热稳定校验:

当短路电流通过被选择的电气设备和栽流导体时,其热效应不应超过允许值,

校验电气设备及电缆(3~6KV厂用馈线电缆除外)热稳定时,短路持续时间一般采用后备保护动作时间加断路器全分闸时间。

B.动稳定校验:

用熔断器保护的电气设备和载流导体,可不校验热稳定;电缆不校验动稳定;

(3)短路校验时短路电流的计算条件

所用短路电流其容量应按具体工程的设计规划容量计算,并应考虑电力系统的远景发展规划;计算电路应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列的接线方式;短路的种类一般按三相短路校验;对于发电机出口的两相短路或中性点直接接地系统、自耦变压器等回路中的单相、两相接地短路较三相短路更严重时,应按严重情况校验。

110kV侧断路器的选择

在本设计中110kV侧断路器采用SF6高压断路器,因为与传统的断路器相比SF6高压断路器具有安全可靠,开断性能好,结构简单,尺寸小,质量轻,操作噪音小,检修维护方便等优点,已在电力系统的各电压等级得到广泛的应用。

110kV的配电装置是户外式,所以断路器也采用户外式。

LW11—110断路器的具体技术参数如下:

额定电压

最高工作电压

额定电流

额定开断电流

动稳定电流

110kV

123

(145)kV

1600—

—3150

31.5

40

80

100

热稳定电流(3s)

额定关合电流

固有分闸时间

分闸时间

31.5kA(3S)

40kV

80kA

100kA

≤40ms

≤135ms

由上表知:

1.该断路器的额定电压为110kV, 不小于装设断路器所在电网的额定电压。

2.该断路器的最大持续工作电流:

Imax=1.05In=

=

=220.4A

该断路器的额定电流为1600A(最小的),大于通过该断路器的最大持续工作电流220.4A

3.校验断路器的断流能力

此断路器的额定开断电流Iekd=31.5kA

短路电流周期分量:

IZK=3.036kAIekd>IZK

4.此断路器的额定关合电流Ieg=80kA

Ich=7.74KAIeg>Ich

5.动稳定校验

动稳定电流:

idw=80kAich=7.74kAidw>ich

热稳定效应:

Qd=

×t=

×3=27.65KA2S

Ir2t=31.52×3=2976.75>Qd

操作机构,采用气动操动机构;由《电气工程电气设备手册》(上册)查得应采用CQA—1型电气操动机构。

110kV隔离开关的选择

采用户外型隔离开关。

参考《电气工程电气手册》(上册),可知应采用GW5—110G高压隔离开关。

此隔离开关技术数据如下

额定电压

额定电流

动稳定电流值

动稳定电流值

操动机构

110KV

600A

50kA

72kA

 

16(4S)

40(5S)

CS17—G

校验:

通过隔离开关的最大持续工作电流为220.4A,隔离开关的额定电流为600A,大于通过隔离开关的最大持续工作电流。

动稳定校验:

动稳定电流:

idw=50kAich=7.74kAidw>ich

热稳定效应:

Qd=

×t=

×5=44.4KA2S

Ir2t=142×5=980>Qd

敞露母线选择

硬母线一般是指配电装置中的汇流母线和电气设备之间连接用的裸硬导体。

硬母线分为敞露式和封闭式两类。

1.母线材料和截面形状的选择:

目前母线材料广泛采用铝材,因为铝电阻率较低,有一定的机械强度,质量轻、价格较低,我国铝材的储量丰富。

钢虽有较好的性能,但价格贵,我国储备不多。

所以只有在一些特殊场合,如工作电流较大,位置特别狭窄,环境对铝材有严重腐蚀的情况下才用铝材。

综上所述,在本设计中母线材料采用铝。

硬母线截面积形状一般有矩形、槽型、和管型。

矩形母线散热条件好,有一定的的机械强度,便于固定和连接,但集肤效应较大,矩形母线一般只用于35kV及以下,电流在4000A级以下的配电装置中。

槽形母线的机械性能强度较好,集肤效应较小,在4000—8000A时一般采用槽形母线。

管形母线集肤效应较小,机械强度高,管内可用水或风冷却,因此可用于800A及以上的大电流母线。

此外,管形母线表面光滑,电晕放电电压高,因此,110kV以上配电装置中多采用管形母线。

由以上分析知:

在本设计中110kV采用槽形母线,35kV、10kV采用矩形母线

管形母线在支柱绝缘子上放置方式有两种:

竖放和平放。

平放比竖放散热条件差,允许电流小。

三相母线的布置方式有水平布置和垂直布置,水平布置母线竖放时,机械强度差,散热条件好。

垂直布置母线竖放时,机械强度和散热条件都较好,但增加了配电装置的高度。

综上,矩形母线在支柱绝缘子上采用水平布置母线竖放。

2.母线截面积选择:

本设计中母线的截面按长期允许电流选择。

按长期允许电流选择时,所选母线截面积的长期允许电流应大于装设回路中最大持续工作电流即,Iy≥ImaxIy=kIye

Iy——基准环境条件下的长期允许电流

K—综合校正系数

110kV母线截面选择

Imax=1.05Ie=210.8

从《电力工程电气手册》第八章第一节表8—3中查得应选用载流量为2280(A)的双槽形母线,其参数如下:

h(mm):

75,b(mm):

35,t(mm):

4,r(mm):

6双槽形导体截面积s(mm2):

1040,集肤效应系数:

1.012

35kV母线截面选择

  Imax=1.05Ie=1.05×

=646.5(A)

从《电力工程电气手册》第八章第一节表8—3种查得应选用载流量为692(A)单条竖放的导体,导体尺寸:

h×b=50×5(mm×mm)

Iy=692A

10kV母线截面选择

Imax=1.05Ie=1.05×

=2309.47(A)

从《电力工程电气手册》第八章第一节表8—3种查得应选用载流量为2373(A)双条竖放的导体,导体尺寸:

h×b=80×10(mm×mm)

110kV电流互感器选择

由《电气工程电气设备手册》(上册)中比较分析得,在本设计中宜采用LCWB—110(W)型号的电流互感器,技术数据如下:

额定电流

二次组合

准确级准

短时热稳定电流

动稳定电流

10%倍数

二次负荷

二辞赋

 

110kV

600A

0.5

 

15.8—31.6kA

(KA)

40—80kA

(KA)

P/P/P/0.5

此电流互感器为多匝油浸式瓷绝缘电流互感器,其性能符合国标和IEC的有关标准,具有结构严密,绝缘强度高,介质损耗率和局部放电量低,可靠性高以及运行维护简单方便等特点。

Imax=1.05In=

=

=220.4KA

Ie1=300AIe1>Imax

热稳定校验:

LH的热稳定能力用热稳定倍数

表示。

热稳定倍数

等于1S内允许通过的热稳定电流与一次额定电流之比。

×t=

×t=(15.8)2×1=249.64A

Qd=27.65∴

符合要求

动稳定校验:

LH的动稳定能力用动稳定倍数

表示。

等于内部允许通过极限电流的峰值与一次额定电流之比。

电压互感器的选择

从《电气工程设备手册》(电气一次部分)中比较各种电压互感器后选择JDXN2—110W的电压互感器。

该系列电压互感器为单相、三绕组、串及绝缘,户外安装互感器,适用于交流50HZ电力系统,作电压、电能测量和继电保护用。

避雷器的配置

(1)配电装置的每组母线上,应装设避雷器,但进出线都装设避雷器时除外。

(2)三绕组变压器低压侧的一相上宜设置一组避雷器。

(3)下列情况的变压器中性点应装设避雷器

1)直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。

2)直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为单台变压器运行时。

3)不接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。

(4)发电厂变电所35kv及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。

(5)SF6全封闭电器的架空线路侧必须装设避雷器。

(6)110—220kV线路侧一般不装设避雷器。

110kV侧选用FZ-110J型号的避雷器

八、电缆选择

电力电缆用于发电机、电力变压器、配电装置之间的连接,电动机与自用电源的连接,以及输电线路的引出。

结构类型的选择

(1)电缆芯线有铜芯和铝芯,国内工程一般选用铝芯,但需移动或震动剧烈的场所应采用铜芯。

(2)在35kV及以下三相三线制的交流装置中,用三芯电缆;

(3)直埋电缆一般采用带护层的铠装电缆。

35kV出线的电缆选择

1.额定电压和结构类型的选择。

根据题意,应选择UN=35kV的YJLV型电缆。

2.截面选择。

按最大持续工作电流选择

Imax=

=

=132A

查表得,选择S=50m㎡的电缆,өN=25℃时,IN=135A,өal=90℃。

温度修正系数

Kt=

=

=1.0

查表得,K3=1.08K4=0.92

允许载流量

Ial=KtK3K4IN=1.08×1.0×0.92×135=134A>132A

满足长期发热要求。

3.允许电压损失校验。

查表得,r=0.64x=0.133。

△U%=173ImaxL(rcosφ+xsinφ)/Uns=173×132×2×(0.64×0.92+0.133×0.39)/35000=0.84%<5%

满足要求。

4.热稳定校验。

正常最高运行温度为

өw=ө+(өal-ө)·(Imax/Ial)

=25+(90-25)(132/135)

=87.2(℃)

热稳定系数C

C=

×

=

×

=78.5

短路电流热效应

Qk=

×t=

×1=9.2[kA2S]

Smin=

/C=

/78.5=38.6(m㎡)<50m㎡满足热稳定。

10kV出线的电缆选择

1.额定电压和结构类型的选择。

根据题意,应选择UN=10kV的YJLV型电缆。

2.截面选择。

按最大持续工作电流选择

Imax=

=

=67A

查表得,选择S=50m㎡的电缆,өN=25℃时,IN=90A,өal=90℃。

温度修正系数

Kt=

=

=1.0查表得,K3=1.08K4=0.92

允许载流量

Ial=KtK3K4IN=1.08×1.0×0.92×90=89.4>67A

满足长期发热要求。

5.允许电压损失校验。

查表得,r=1.28x=0.094。

△U%=173ImaxL(rcosφ+xsinφ)/Uns=173×132×2×(1.28×0.9+0.094×0.44)/10000=4.5%<5%满足要求。

6.热稳定校验。

正常最高运行温度为

өw=ө+(өal-ө)·(Imax/Ial)

=25+(90-25)(67/89.4)

=61..5(℃)

热稳定系数C

C=

×

=

·

=84.4

短路电流热效应

Qk=

×t=

×2=18.4【KA2S】

Smin=

/C=

/84.4=49.5(m㎡)<50m㎡

满足热稳定。

高压开关柜的选择

近年来高压开关柜(简称开关柜)的开发和制造发展的步伐比较快。

额定电压有3、6、10、35kV等多种,额定电流可达到3150A,开断电流可达到50kA。

高压开关柜应实现电器和机械的“五防闭锁”,防止误操作,提高安全可靠性,“五防”的具体要求是:

1.防止误合、误分断路器

2.防止带负荷分、合隔离开关

3.防止带电挂接地线

4.防止带接地线合闸

5.防止误入带电间隔

10kV侧高压开关柜的选择:

比较各开关柜后选择GC5-10(F)型手车式高压开关柜。

技术数据如下:

名称

参数

名称

参数

额定电压

3\6\10kV

额定电流

630\1000\2500A

母线系统

单母线

最高工作电压

3.67.211.5

10kV变压器出线开关柜方案选择

一次线路选择

主要设备:

LFS-10型电流互感器  ZN3-10型真空断路器

10kV线路出线开关柜方案选择

Imax=

=

=64.15A

一次线路选择

主要设备:

LFS-10型电流互感器  ZN3-10型真空断路器

FS3型避雷器  JDJJ2电压互感器

RN2型熔断器

有关设备校验:

JN2-10型隔离开关;JDJ-10型电压互感器

1.ZN3-10型真空断路器

ZN3-10型真空断路器的技术参数如下:

资料参考《电气工程电气设备手册》表4-3-3

额定电压

额定电流

开断电流

动稳定电流

10kV

630A 1000A

20kA

50kA

热稳定电流(2s)

合闸时间

固有分闸时间

生产家

20kA

≤0.1s

≤0.05s

四川电器厂

此断路器的额定开断电流Ieg=20kA

Ich=7.74kAIeg>Ich

5.动稳定校验

动稳定电流:

idw=50kAich=7.74kAidw>ich

热稳定效应:

Qd=

×t=

×2=18.4KA2S

Ir2t=202×2=800KA2S>Qd

校验合格

LFS-10型电流互感器的校验

从《电气工程电气设备手册》中查得参数

额定电流比

准确级准

热稳定电流

动稳定电流

5~1000/5

0.53B

 

32kA(2S)

80kA

上表中的动稳定电流、短时热稳定电流实在额定电流为200KA的情况下取的。

热稳定校验:

LH的热稳定能力用热稳定倍数

表示。

热稳定倍数

等于1S内允许通过的热稳定电流与一次额定电流之比。

×t=

×t=(32)2×2=2048A2S

Qd=

×t=

×

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2