检测与转换技术实验指导书概要.docx

上传人:b****1 文档编号:571062 上传时间:2023-04-29 格式:DOCX 页数:119 大小:2.18MB
下载 相关 举报
检测与转换技术实验指导书概要.docx_第1页
第1页 / 共119页
检测与转换技术实验指导书概要.docx_第2页
第2页 / 共119页
检测与转换技术实验指导书概要.docx_第3页
第3页 / 共119页
检测与转换技术实验指导书概要.docx_第4页
第4页 / 共119页
检测与转换技术实验指导书概要.docx_第5页
第5页 / 共119页
检测与转换技术实验指导书概要.docx_第6页
第6页 / 共119页
检测与转换技术实验指导书概要.docx_第7页
第7页 / 共119页
检测与转换技术实验指导书概要.docx_第8页
第8页 / 共119页
检测与转换技术实验指导书概要.docx_第9页
第9页 / 共119页
检测与转换技术实验指导书概要.docx_第10页
第10页 / 共119页
检测与转换技术实验指导书概要.docx_第11页
第11页 / 共119页
检测与转换技术实验指导书概要.docx_第12页
第12页 / 共119页
检测与转换技术实验指导书概要.docx_第13页
第13页 / 共119页
检测与转换技术实验指导书概要.docx_第14页
第14页 / 共119页
检测与转换技术实验指导书概要.docx_第15页
第15页 / 共119页
检测与转换技术实验指导书概要.docx_第16页
第16页 / 共119页
检测与转换技术实验指导书概要.docx_第17页
第17页 / 共119页
检测与转换技术实验指导书概要.docx_第18页
第18页 / 共119页
检测与转换技术实验指导书概要.docx_第19页
第19页 / 共119页
检测与转换技术实验指导书概要.docx_第20页
第20页 / 共119页
亲,该文档总共119页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

检测与转换技术实验指导书概要.docx

《检测与转换技术实验指导书概要.docx》由会员分享,可在线阅读,更多相关《检测与转换技术实验指导书概要.docx(119页珍藏版)》请在冰点文库上搜索。

检测与转换技术实验指导书概要.docx

检测与转换技术实验指导书概要

目录

2000系列基本实验举例

实验一应变片单臂电桥性能实验…………………………………11

实验二应变片半桥性能实验………………………………………17

实验三应变片全桥性能实验………………………………………18

实验四应变片单臂、半桥、全桥性能比较实验…………………20

实验五应变片直流全桥的应用—电子秤实验……………………21

实验六应变片温度影响实验………………………………………22

实验七移相器、相敏检波器实验…………………………………23

实验八应变片交流全桥(应变仪)的应用—振动测量实验…………27

实验九压阻式压力传感器测量压力特性实验………………………30

*实验十压阻式压力传感器应用—压力计实验………………………32

实验十一差动变压器的性能实验………………………………………32

实验十二激励频率对差动变压器特性影响实验……………………37

实验十三差动变压器零点残余电压补偿实验………………………38

实验十四差动变压器测位移特性实验………………………………39

实验十五差动变压器的应用—振动测量实验………………………41

实验十六电容式传感器测位移特性实验……………………………43

实验十七线性霍尔传感器测位移特性实验…………………………45

实验十八线性霍尔传感器交流激励时位移特性实验…………………48

实验十九开关式霍尔传感器测转速实验………………………………50

实验二十磁电式转速传感器测转速实验……………………………51

实验二十一压电式传感器测振动实验……………………………………53

实验二十二电涡流传感器测量位移特性实验……………………………57

实验二十三被测体材质对电涡流传感器特性影响实验…………………60

实验二十四被测体面积大小对电涡流传感器特性影响实验……………61

实验二十五电涡流传感器测量振动实验…………………………………62

实验二十六光纤位移传感器测位移特性实验……………………………63

实验二十七光电传感器测量转速实验……………………………………66

实验二十八光电传感器控制电机转速实验……………………………67

实验二十九温度源的温度调节控制实验………………………………75

实验三十Pt100铂电阻测温特性实验…………………………………79

实验三十一Cu50铜电阻测温特性实验…………………………………85

实验三十二K热电偶测温特性实验………………………………………86

实验三十三K热电偶冷端温度补偿实验…………………………………92

实验三十四E热电偶测温特性实验………………………………………95

实验三十五集成温度传感器(AD590)的温度特性实验…………………96

实验三十六气敏传感器实验………………………………………………99

实验三十七湿度传感器实验……………………………………………100

示范实验举例

实验一应变片单臂电桥性能实验

一、实验目的:

了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:

电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应

  所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:

设其长为:

L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得

(1—1)

当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率dR/R为:

(1—2)

式中:

dL/L为导体的轴向应变量εL;dr/r为导体的横向应变量εr 

由材料力学得:

                εL=-μεr         (1—3)

式中:

μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:

(1—4)

式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度

   它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

   

(1)、金属导体的应变灵敏度K:

主要取决于其几何效应;可取

(1—5)

其灵敏度系数为:

K=

金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:

主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。

也就是说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。

   半导体材料的电阻应变效应主要体现为压阻效应,其灵敏度系数较大,一般在100到200左右。

3、贴片式应变片应用

在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。

一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

*本实验以金属箔式应变片为研究对象。

4、箔式应变片的基本结构

金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右

的金属丝或金属箔制成,如图1—1所示。

(a)丝式应变片                                       (b)箔式应变片

图1—1应变片结构图

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:

ΔR/R=Kε式中:

ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

5、测量电路

  为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。

电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。

因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。

基本电路如图1—2(a)、(b)、(c)所示。

(a)单臂(b)半桥(c)全桥

图1—2应变片测量电路

(a)、单臂

Uo=U①-U③

=〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E

={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/〔(R5+R1+△R1)(R7+R6)〕}E

设R1=R5=R6=R7,且△R1/R1=ΔR/R<<1,ΔR/R=Kε,K为灵敏度系数。

则Uo≈(1/4)(△R1/R1)E=(1/4)(△R/R)E=(1/4)KεE

(b)、双臂(半桥)

同理:

Uo≈(1/2)(△R/R)E=(1/2)KεE

(C)、全桥

同理:

Uo≈(△R/R)E=KεE

6、箔式应变片单臂电桥实验原理图

图1—3应变片单臂电桥性能实验原理图

图中R5、R6、R7为350Ω固定电阻,R1为应变片;RW1和R8组成电桥调平衡网络,E为供桥电源±4V。

桥路输出电压Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE。

差动放大器输出为Vo。

三、需用器件与单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码;4

位数显万用表(自备)。

四、实验步骤:

应变传感器实验模板说明:

应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。

实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。

加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。

多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

1、将托盘安装到传感器上,如图1—4所示。

图1—4传感器托盘安装示意图

2、测量应变片的阻值:

当传感器的托盘上无重物时,分别测量应变片R1、R2、R3、R4

的阻值。

在传感器的托盘上放置10只砝码后再分别测量R1、R2、R3、R4的阻值变化,分析应变片的受力情况(受拉的应变片:

阻值变大,受压的应变片:

阻值变小。

)。

图1—5测量应变片的阻值示意图

3、实验模板中的差动放大器调零:

按图1—6示意接线,将主机箱上的电压表量程切换

开关切换到2V档,检查接线无误后合上主机箱电源开关;调节放大器的增益电位器RW3合适位置(先顺时针轻轻转到底,再逆时针回转1圈)后,再调节实验模板放大器的调零电位器RW4,使电压表显示为零。

 

图1—6差动放在器调零接线示意图

4、应变片单臂电桥实验:

关闭主机箱电源,按图1—7示意图接线,将±2V~±10V可调电源调节到±4V档。

检查接线无误后合上主机箱电源开关,调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在传感器的托盘上依次增加放置一只20g砝码(尽量靠近托盘的中心点放置),读取相应的数显表电压值,记下实验数据填入表1。

图1—7应变片单臂电桥实验接线示意图

表1应变片单臂电桥性能实验数据

重量(g)

0

电压(mV)

0

5、根据表1数据作出曲线并计算系统灵敏度S=ΔV/ΔW(ΔV输出电压变化量,ΔW重量变化量)和非线性误差δ,δ=Δm/yFS×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:

yFS满量程输出平均值,此处为200g。

实验完毕,关闭电源。

实验二应变片半桥性能实验

一、实验目的:

了解应变片半桥(双臂)工作特点及性能。

二、基本原理:

应变片基本原理参阅实验一。

应变片半桥特性实验原理如图2—1所示。

不同应力方向的两片应变片接入电桥作为邻边,输出灵敏度提高,非线性得到改善。

其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE。

图2—1应变片半桥特性实验原理图

三、需用器件与单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:

1、按实验一(单臂电桥性能实验)中的步骤1和步骤3实验。

2、关闭主机箱电源,除将图1—7改成图2—2示意图接线外,其它按实验一中的步骤4实验。

读取相应的数显表电压值,填入表2中。

图2—2应变片半桥实验接线示意图

 

表2应变片半桥实验数据

重量(g)

0

电压(mV)

0

3、根据表2实验数据作出实验曲线,计算灵敏度S=ΔV/ΔW,非线性误差δ。

实验完毕,关闭电源。

五、思考题:

半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:

(1)对边

(2)邻边。

 

实验三应变片全桥性能实验

一、实验目的:

了解应变片全桥工作特点及性能。

二、基本原理:

应变片基本原理参阅实验一。

应变片全桥特性实验原理如图3—1所示。

应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:

R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。

其输出灵敏度比半桥又提高了一倍,非线性得到改善。

图3—1应变片全桥特性实验接线示意图

三、需用器件和单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:

实验步骤与方法(除了按图3—2示意接线外)参照实验二,将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。

实验完毕,关闭电源。

图3—2应变片全桥性能实验接线示意图

表3全桥性能实验数据

重量(g)

电压(mV)

五、思考题:

测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:

(1)可以

(2)不可以。

 

*实验四应变片单臂、半桥、全桥性能比较

一、实验目的:

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:

如图4(a)、(b)、(c)

(a)单臂(b)半桥(c)全桥

图4应变电桥

(a)、Uo=U①-U③

=〔(R1+△R1)/(R1+△R1+R2)-R4/(R3+R4)〕E

=〔(1+△R1/R1)/(1+△R1/R1+R2/R2)-(R4/R3)/(1+R4/R3)〕E

设R1=R2=R3=R4,且△R1/R1<<1。

Uo≈(1/4)(△R1/R1)E

所以电桥的电压灵敏度:

S=Uo/(△R1/R1)≈kE=(1/4)E

(b)、同理:

Uo≈(1/2)(△R1/R1)E

S=(1/2)E

(C)、同理:

Uo≈(△R1/R1)E

S=E

三、需用器件与单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:

根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。

经实验验证阐述理由(注意:

实验一、二、三中的放大器增益必须相同)。

实验完毕,关闭电源。

 

实验五应变片直流全桥的应用—电子秤实验

一、实验目的:

了解应变直流全桥的应用及电路的标定。

二、基本原理:

常用的称重传感器就是应用了箔式应变片及其全桥测量电路。

数字电子秤实验原理如图5—1。

本实验只做放大器输出Vo实验,通过对电路的标定使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。

图5—1数字电子称原理框图

三、需用器件与单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:

1、按实验一中的1和3步骤实验。

2、关闭主机箱电源,按图3—2(应变片全桥性能实验接线示意图)示意接线,将

±2V~±10V可调电源调节到±4V档。

检查接线无误后合上主机箱电源开关,调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;

3、将10只砝码全部置于传感器的托盘上,调节电位器RW3(增益即满量程调节)使数显表显示为0.200V(2V档测量)。

4、拿去托盘上的所有砝码,调节电位器RW4(零位调节)使数显表显示为0.000V。

5、重复3、4步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,将砝码依次放在托盘上称重;放上笔、钥匙之类的小东西称一下重量。

实验完毕,关闭电源。

 

实验六应变片的温度影响实验

一、实验目的:

了解温度对应变片测试系统的影响。

二、基本原理:

电阻应变片的温度影响,主要来自两个方面。

敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致会产生附加应变。

因此当温度变化时,在被测体受力状态不变时,输出会有变化。

三、需用器件与单元:

主机箱中±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变传感器实验模板、托盘、砝码、加热器(在实验模板上,已粘贴在应变传感器左下角底部)。

四、实验步骤:

1、按照实验三实验。

2、将200g砝码放在托盘上,在数显表上读取记录电压值Uo1。

3、将主机箱中直流稳压电源+5V、⊥接于实验模板的加热器+5V、⊥插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uot,Uot-Uo1即为温度变化的影响。

计算这一温度变化产生的相对误差:

 

实验完毕,关闭电源。

 

实验七移相器、相敏检波器实验

一、实验目的:

了解移相器、相敏检波器的工作原理。

二、基本原理:

1、移相器工作原理:

图7—1为移相器电路原理图与实验模板上的面板图。

图中,IC-1、R1、R2、R3、C1

图7—1移相器原理图与模板上的面板图

构成一阶移相器(超前),在R2=R1的条件下,可证明其幅频特性和相频特性分别表示为:

KF1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)

KF1(ω)=1

ΦF1(ω)=-л-2tg-1ωR3C1

其中:

ω=2лf,f为输入信号频率。

同理由IC-2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:

KF2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)

KF2(ω)=1

ΦF2(ω)=-л-2tg-1ωRwC3

由此可见,根据幅频特性公式,移相前后的信号幅值相等。

根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。

显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:

即ΦF=ΦF1=-л-2tg-12лfR3C1

若调整移相电位器Rw,则相应的移相范围为:

ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3

已知R3=10kΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即

可计算出图7—1所示二阶移相器的初始移相角和移相范围。

2、相敏检波器工作原理:

图7—2为相敏检波器(开关式)原理图与实验模板上的面板图。

图中,AC为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。

图7—2相敏检波器原理图与模板上的面板图

原理图中各元器件的作用:

C5-1交流耦合电容并隔离直流;IC5-1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V~-14V);D5-1二极管箝位得到合适的开关波形V7≤0V(0~-14V);Q5-1是结型场效应管,工作在开、关状态;IC5-2工作在倒相器、跟随器状态;R5-6限流电阻起保护集成块作用。

关键点:

Q5-1是由参考电压V7矩形波控制的开关电路。

当V7=0V时,Q5-1导通,使IC5-2同相输入5端接地成为倒相器,即V3=-V1;当V7<0V时,Q5-1截止(相当于断开),IC5-2成为跟随器,即V3=V1。

相敏检波器具有鉴相特性,输出波形V3的变化由检波信号V1与参考电压波形V2之间的相位决定。

下图7—3为相敏检波器的工作时序图。

图7—3相敏检波器工作时序图

三、需用器件与单元:

主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、音频振荡器;移相器/相敏检波器/低通滤波器实验模板;双踪示波器(自备)。

四、实验步骤:

(一)移相器实验

1、调节音频振荡器的幅度为最小(幅度旋钮逆时针轻轻转到底),按图7—4示意接线,

检查接线无误后,合上主机箱电源开关,调节音频振荡器的频率(用示波器测量)为f=1kHz,幅度适中(2V≤Vp-p≤8V)。

图7—4移相器实验接线图

2、正确选择双线(双踪)示波器的“触发”方式及其它设置(提示:

触发源选择内触发CH1、水平扫描速度TIME/DIV在0.1mS~10µS范围内选择、触发方式选择AUTO。

垂直显示方式为双踪显示DUAL、垂直输入耦合方式选择交流耦合AC、灵敏度VOLTS/DIV在1V~5V范围内选择),调节移相器模板上的移相电位器(旋钮),用示波器测量波形的相角变化。

3、调节移相器的移相电位器(逆时针到底0kΩ~顺时针到底10kΩ变化范围),用示波器可测定移相器的初始移相角(ΦF=ΦF1)和移相范围△ΦF。

4、改变输入信号频率为f=9kHz,再次测试相应的ΦF和△ΦF。

测试完毕关闭主电源。

(二)相敏检波器实验

1、调节音频振荡器的幅度为最小(幅度旋钮逆时针轻轻转到底),将±2V~±10V可调电源调节到±2V档。

按图7—5示意接线,检查接线无误后合上主机箱电源开关,调节音频振荡器频率f=5kHz,峰峰值Vp-p=5V(用示波器测量);结合相敏检波器工作原理,分析观察相敏检波器的输入、输出波形关系(跟随关系,波形相同)。

*提示:

示波器设置除与

(一)移相器实验2中的垂直输入耦合方式选择直流耦合DC外,其它设置都相同;但当CH1、CH2输入对地短接时,将二者光迹线移动到显示屏中间(居中)后再进行测量波形。

图7—5相敏检波器跟随、倒相实验接线示意图

2、将相敏检波器的DC参考电压改接到-2V(-Vout),调节相敏检波器的电位器钮使示波器显示的两个波形幅值相等(相敏检波器电路已调整完毕,以后不要触碰这个电位器钮),观察相敏检波器的输入、输出波形关系(倒相作用,反相波形)。

关闭电源。

3、按图7—6示意图接线,合上主机箱电源,调节移相电位器钮(相敏检波器电路上一步已调好不要动),结合相敏检波器的工作原理,分析观察相敏检波器的输入、输出波形关系。

注:

一般要求相敏检波器工作状态Vi检波信号与参考电压AC相位处于同相或反相。

图7—6相敏检波器检波实验接线示意图

4、将相敏检波器的AC参考电压改接到180°,调节移相电位器,观察相敏检波器的输入、输出波形关系。

关闭电源。

五、思考题:

通过移相器、相敏检波器的实验是否对二者的工作原理有了更深入的理解。

作出相敏检波器的工作时序波形,能理解相敏检波器同时具有鉴幅、鉴相特性吗?

实验八应变片交流全桥的应用(应变仪)—振动测量实验

一、实验目的:

了解利用应变交流电桥测量振动的原理与方法。

二、基本原理:

图8—1是应变片测振动的实验原理方块图。

当振动源上的振

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2