污水处理的英文文献中英文翻译.docx

上传人:聆听****声音 文档编号:575310 上传时间:2023-04-29 格式:DOCX 页数:25 大小:152.67KB
下载 相关 举报
污水处理的英文文献中英文翻译.docx_第1页
第1页 / 共25页
污水处理的英文文献中英文翻译.docx_第2页
第2页 / 共25页
污水处理的英文文献中英文翻译.docx_第3页
第3页 / 共25页
污水处理的英文文献中英文翻译.docx_第4页
第4页 / 共25页
污水处理的英文文献中英文翻译.docx_第5页
第5页 / 共25页
污水处理的英文文献中英文翻译.docx_第6页
第6页 / 共25页
污水处理的英文文献中英文翻译.docx_第7页
第7页 / 共25页
污水处理的英文文献中英文翻译.docx_第8页
第8页 / 共25页
污水处理的英文文献中英文翻译.docx_第9页
第9页 / 共25页
污水处理的英文文献中英文翻译.docx_第10页
第10页 / 共25页
污水处理的英文文献中英文翻译.docx_第11页
第11页 / 共25页
污水处理的英文文献中英文翻译.docx_第12页
第12页 / 共25页
污水处理的英文文献中英文翻译.docx_第13页
第13页 / 共25页
污水处理的英文文献中英文翻译.docx_第14页
第14页 / 共25页
污水处理的英文文献中英文翻译.docx_第15页
第15页 / 共25页
污水处理的英文文献中英文翻译.docx_第16页
第16页 / 共25页
污水处理的英文文献中英文翻译.docx_第17页
第17页 / 共25页
污水处理的英文文献中英文翻译.docx_第18页
第18页 / 共25页
污水处理的英文文献中英文翻译.docx_第19页
第19页 / 共25页
污水处理的英文文献中英文翻译.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

污水处理的英文文献中英文翻译.docx

《污水处理的英文文献中英文翻译.docx》由会员分享,可在线阅读,更多相关《污水处理的英文文献中英文翻译.docx(25页珍藏版)》请在冰点文库上搜索。

污水处理的英文文献中英文翻译.docx

NutrientremovalinanA2O-MBRreactorwithsludgereduction

ABSTRACT

Inthepresentstudy,anadvancedsewagetreatmentprocesshasbeendevelopedbyincorporatingexcesssludgereductionandphosphorousrecoveryinanA2O-MBRprocess.TheA2O-MBRreactorwasoperatedatafluxof77LMHoveraperiodof270days.Thedesignedfluxwasincreasedstepwiseoveraperiodoftwoweeks.ThereactorwasoperatedattwodifferentMLSSrange.ThermochemicaldigestionofsludgewascarriedoutatafixedpH(11)andtemperature(75℃)for25%CODsolubilisation.Thereleasedpbospborouswasrecoveredbyprecipitationprocessandtheorganicswassentbacktoanoxictank.ThesludgedigestiondidnothaveanyimpactonCODandTPremovalefficiencyofthereactor.Duringthe270daysofreactoroperation,theMBRmaintainedrelativelyconstanttransmembranepressure.Theresultsbasedonthestudyindicatedthattheproposedprocessconfigurationhaspotentialtoreducetheexcesssludgeproductionaswellasitdidn'tdetonatedthetreatedwaterquality.

Keywords:

A2Oreactor; MBR; Nutrientremoval; TMP

1.Introduction

Excesssludgereductionandnutrientsremovalarethetwoimportantproblemsassociatedwithwastewatertreatmentplant.MBRprocesshasbeenknownasaprocesswithrelativelyhighdecayrateandlesssludgeproductionduetomuchlongersludgeageinthereactor(Wen

etal.,2004).SludgeproductioninMBRisreducedby28-68%,dependingonthesludgeageused(Xiaetal.,

2008).However,minimizingthesludgeproductionbyincreasingsludgeageislimitedduetothepotentialadverseeffectofhighMLSSconcentrationsonmembrane(Yoonetal.,2004).ThisproblemcanbesolvedbyintroducingsludgedisintegrationtechniqueinMBR(Youngetal.,2007).Sludgedisintegrationtechniqueshavebeenreportedtoenhancethebiodegradabilityofexcesssludge(VlyssidesandKarlis,2004).Inoverall,thebasisforsludgereductionprocessesiseffectivecombinationofthemethodsforsludgedisintegrationandbiodegradationoftreatedsludge.Advancesinsludgedisintegrationtechniquesofferafewpromisingoptionsincludingultrasound(Guoetal.,2008),pulsepower(Choietal.,2006),ozone(Weemaesetal.,2000),thermal(Kimetal.,2003),alkaline(Lietal.,2008)acid(Kimetal.,2003)andthermochemical

(VlyssidesandKarlis,2004).Amongthevariousdisintegrationtechniques,thermochemicalwasreportedtobesimpleandcosteffective(WeemaesandVerstraete,1998).Inthermal-chemicalhydrolysis,alkalisodiumhydroxidewasfoundtobethemosteffectiveagentininducingcelllysis(Rockeretal.,1999).

Conventionally,thenutrientremovalwascarriedoutinanA2Oprocess.Ithasadvantageofachieving,nutrientremovalalongwithorganiccompoundoxidationinasinglesludgeconfigurationusinglinkedreactorsinseries(Tchobanoglousetal.,2003).Thephosphoroesremovalhappensbysubjectingphosphorousaccumulatingorganisms(PAO)bacteriaunderaerobicandanaerobicconditions(AkinandUgurlu,2004).TheseoperatingproceduresenhancepredominancePAO,whichareabletouptakephosphorousinexcess.Duringthesludgepretreatmentprocessestheboundphosphorouswassolubilisedanditincreasesthephosphorous

concentrationintheeffluentstream(Nishimura,2001).So,itisnecessarytoremovethesolubilisedphosphorusbeforeitentersintomainstream.Besides,thereisagrowingdemandforthesustainablephosphorousresourcesintheindustrializedworld.Inmanydevelopedcountries,researchesarecurrentlyunderwaytorecoverthephosphoroesboundinthesludge'sofenhancedbiologicalphosphorusremovalsystem(EBPR).Thereleasedphosphorouscanberecoveredinusableproductsusingcalciumsaltsprecipitationmethod.Keepingthisfactinmind,inthepresentstudy,anewadvancedwastewatertreatmentprocessisdevelopedbyintegratingthreeprocesses,whichare:

(a)thermochemicalpretreatmentinMBRforexcesssludgereduction(b)A2Oprocessforbiologicalnutrientremoval(c)Precoverythroughcalciumsaltprecipitation.Theexperimentaldataobtainedwerethenusedtoevaluatetheperformanceofthisintegratedsystem.

2.Methods

2.1.Wastewater

Thesyntheticdomesticwastewaterwasusedastheexperimentalinfluent.Itwasbasicallycomposedofamixedcarbonsource,macronutrients(NandP),analkalinitycontrol(NaHCO3)andamicroelementsolution.Thecompositioncontained(/L)210mgglucose,200mgNH4C1,220mgNaHCO3,22一34mgKH2PO4,microelementsolution(0.19mgMnCl24H20,0.0018mgZnCl22H2O,

0.022mgCuCl22H2O,5.6mgMgSO47H2O,0.88mgFeCl36H2O,

1.3mgCaCl2·2H2O).Thesyntheticwastewaterwaspreparedthreetimesaweekwithconcentrationsof210±1.5mg/Lchemicaloxygendemand(COD),40±1mg/Ltotalnitrogen(TN)and5.5mg/Ltotal

phosphorus(TP).

2.2.A2O-MBR

TheworkingvolumeoftheA2O-MBRwas83.4L.Abafflewasplacedinsidethereactortodivideitintoanaerobic(8.4L)anoxic(25

L)andaerobicbasin(50L).Thesyntheticwastewaterwasfeedintothereactorataflowrateof8.4L/h(Q)usingafeedpump.Aliquidlevelsensor,plantedinaerobicbasinofA2O-MBRcontrolledtheflowofinfluent.TheHRTofanaerobic,anoxicandaerobicbasinswere1,3and6h,respectively.Inordertofacilitatenutrientremoval,thereactorwasprovidedwithtwointernalrecycle(1R).IRl(Q=1)connectsanoxicandanaerobicandIR2(Q=3)wasbetweenaerobicandanoxic.Anaerobicandanoxicbasinswereprovidedwithlowspeedmixertokeepthemixedliquidsuspendedsolids(MLSS)insuspension.Intheaerobiczone,diffuserswereusedtogenerateairbubblesforoxidationoforganicsandammonia.Dissolvedoxygen(DO)concentrationintheaerobicbasinwasmaintainedat3.5mg/1andwasmonitoredcontinuouslythroughonlineDOmeter.Thesolidliquidseparationhappensin

aerobicbasinwiththehelpoffiveflatsheetmembraneshavingaporesizeof0.23pm.Theareaofeachmembranewas0.1m2.Theywereconnectedtogetherbyacommontube.Aperistalticpump

wasconnectedinthecommontubetogeneratesuctionpressure.Inthecommontubeprovisionwasmadetoaccommodatepressuregaugetomeasuretransmembranepressure(TMP)duringsuction.Thesuctionpumpwasoperatedinsequenceoftiming,whichconsistsof10minswitchon,and2minswitchoff.

2.3.Thermochemicaldigestionofsludge

MixedliquorfromaerobicbasinofMBRwaswithdrawnattheratioof1.5%ofQ/dayandsubjectedtothermochemicaldigestion.ThermochemicaldigestionwascarriedoutatafixedpHof11(NaOH)

andtemperatureof75℃for3h.Afterthermochemicaldigestion

thesupernatantandsludgewereseparated.Thethermo-chemicallydigestedsludgewasamenabletofurtheranaerobicbio-degradation(VlyssidesandKarlis,2004),soitwassenttotheanaerobicbasinoftheMBR

2.4.Phosphorusrecovery

Limewasusedasaprecipitanttorecoverthephosphorousinthesupernatant.Aftertherecoveryofprecipitantthecontentwassentbacktoanoxictankasacarbonsourceandalkalinitysupelementfordenitrification.

2.5.Chemicalanalysis

COD,MLSS,TP,TNoftherawandtreatedwastewaterwereanalyzedfollowingmethodsdetailedin(APHA,2003).Theinfluentandeffluentammoniaconcentrationwasmeasuredusinganion-selectiveelectrode(TheretoOrion,Model:

95一12).Nitrateinthesamplewasanalyzedusingcadmiumreductionmethod(APHA,2003).

3.Resultsanddiscussion

Fig.1presentsdataofMLSSandyieldobservedduringtheoperationalperiodofthereactor.OneoftheadvantagesofMBRreactorwasitcanbeoperatedinhighMLSSconcentration.ThereactorwasseededwithEBPRsludgefromtheKiheung,sewagetreatmentplant,Korea.ThereactorwasstartupwiththeMLSSconcentrationof5700mg/L.Itstartstoincreasesteadilywithincreaseinperiodofreactoroperationandreachedavalueof8100mg/Londay38.Fromthenonwards,MLSSconcentrationwasmaintainedintherangeof7500mg/LbywithdrawingexcesssludgeproducedandcalledrunI.Theobservedyields(Yobs)forexperimentswithoutsludgedigestion(runI)andwithsludgedigestionwerecalculatedand

giveninFig.1.TheYobsforrunIwasfoundtobe0.12gMLSS/gCOD.Itwascomparativelylowerthanavalueof0.4gMLSS/gCODreportedfortheconventionalactivatedsludgeprocesses(Tchoba-noglousetal.,2003).ThedifferenceinobservedyieldofthesetwosystemsisattributedtotheirworkingMLSSconcentration.AthighMLSSconcentrationtheyieldobservedwasfoundtobelow(Visva-nathanetal.,2000).AsaresultofthatMBRgeneratedlesssludge.ThepresentlyusedMLSSranges(7.5一10.5g/L)areselectedonthebasisoftherecommendationbyRosenbergeretal.(2002).Intheirstudy,theyreportedthatthegeneraltrendofMLSSincreaseonfoulinginmunicipalapplicationsseemstoresultinnoimpactatmediumMLSSconcentrations(7一12g/L).

ItisevidentfromthedatathattheCODremovalefficiencyofA2Osystemremainsunaffectedbeforeandaftertheintroductionofsludgedigestionpractices.Atestanalysisshowedthatthedifferencesbetweentheperiodwithoutsludgedigestion(runI)andwithsludgedigestion(runIIandIII)arenotstatisticallysignificant.

However,ithasbeenreportedthat,inwastewatertreatmentprocessesincludingdisintegration-inducedsludgedegradation,theeffluentwaterqualityisslightlydetonatedduetothereleaseofnondegradablesubstancessuchassolublemicrobialproducts(Ya-suiandShibata,1994;Salcaietal.,1997;Yoonetal.,2004).Duringthestudyperiod,CODconcentrationintheaerobicbasinofMBRwasintherangeof18-38mg/Landcorrespondingorganicconcentrationintheeffluentwasvariedfrom4to12mg/L.Fromthisdataitcanbeconcludedthattheme

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2