MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx

上传人:b****4 文档编号:5879615 上传时间:2023-05-09 格式:DOCX 页数:13 大小:216.74KB
下载 相关 举报
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第1页
第1页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第2页
第2页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第3页
第3页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第4页
第4页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第5页
第5页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第6页
第6页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第7页
第7页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第8页
第8页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第9页
第9页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第10页
第10页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第11页
第11页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第12页
第12页 / 共13页
MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx

《MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx》由会员分享,可在线阅读,更多相关《MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx(13页珍藏版)》请在冰点文库上搜索。

MOVING MODEL RIG FOR HIGH SPEED TRAIN AERODYNAMICS.docx

MOVINGMODELRIGFORHIGHSPEEDTRAINAERODYNAMICS

MOVINGMODELRIGFOR

HIGHSPEEDTRAINAERODYNAMICS

TJohnson

AEATechnologyRail

JubileeHouse

4,StChristopher’sWay

PridePark

DerbyDE248L

Yterry.johnson@aeat.co.uk

ABSTRACT

TheAEATechnologyRailMovingModelRigisauniquefacilityforinvestigatingandevaluatingaerodynamiceffectscausedbyhighspeedtrainsintheopenairandintunnels.Modeltrains,usuallyat1/25thscale,canbefiredalongthe150mlongtesttrackatfullscalespeedsupto305km/h.Therearetwoparalleltrackswhichpermitsimultaneousfiringsinoppositedirectionsandallowpassingtraineffectstobemodelled.TheRigissuitedformeasurementsofpassingpressuresintheopenair,pressurewavesintunnels,aswellasslipstreamairspeedsatthetracksideandonplatforms.ThispaperbrieflydescribesthereasonstheRigwasconstructedandthetechnicalrequirementsneededtoensuremodelscalemeasurementsarerepresentativeoffullscale;itdescribeshowtheRigworksandprovidessomecasestudiesillustratingworkthathasbeenundertakenusingtheRiginthepast.TherelevanceoftheRigtonewaerodynamicrequirementsbeingintroducedintorailwayTSIsisoutlined.Finally,futuredevelopmentsplannedfortheRig,whichenhanceitscapabilityinthefieldofhighspeedtrainaerodynamics,aredescribed.

KEYWORDS:

Aerodynamics,modelling,testing,highspeedtrains,pressures,airspeed,tunnels

INTRODUCTION

Intheearly1980’saneedforamovingmodeltestfacilityforrailwaytunnelaerodynamicswasrecognisedbyBritishRailResearch.Fullscaletestswereexpensive(andstillare!

),requiredcomplexplanningandlongleadtimesandwerelabourintensive.Inaddition,theambientconditionswereuncontrollableandthepresenceofadverseweatherconditions,forinstance,wouldofteninvalidateaday’stesting,orattheveryleast,addanuncertaintyintotheanalysisoftheresults.Finally,testingwaslimitedtotrainsthatwerealreadybuiltandinfrastructurethatwasalreadyinplace,limitingthepotentialforinvestigating‘what-if’designs.DespitetherapidgainsinknowledgeofrailwayaerodynamicsmadetothatdatebyBritishRailResearch,theoreticalandcomputationalmethodswerestillinadequatetoinvestigateaerodynamicproblemssufficientlywelltoobviatetheneedfortesting.

Thetechnicalrequirementsformodelscaletestingofrailwayaerodynamicswereeasilyestablished:

Reynolds’numberandtrainMachnumberhadtobenearenoughtofullscalevaluestoensurethatthemodelscaleresultswouldberepresentativeoffullscale.TheReynolds’numberensuresthatscaleeffectsarenotimportantandthetrainMachnumberensuresthatpressurewaves,generatedwhenatrainentersatunnel,behaveinthesamephaseastheirfull-scaleequivalents.FromtheextensivewindtunneltestexperienceoftheBritishRailResearchstaff,itwasknownthatReynolds’numbereffectswouldbesmallifascaleofgreaterthanabout1/30thwasused.ThetrainMachnumber,(ietrainspeeddividedbyspeedofsoundinair),couldonlybematchedtofullscaleiffullscaletrainspeedswereused,(ignoringexoticwaystochangethespeedofsound).Finallytherigwasbuilttoaccommodate1/25thscaletrainmodels(orlargerifrequired)travellingatspeedsupto200km/h.Thefirstversion,consistingofasinglefiringtrackwascompletedin1988.DevelopmentoftheMovingModelRig(MMR)hascontinuedsince1991,drivenbytheincreaseintrainspeedsprimarilyinEurope,butalsointheUK.AmajorextensionoftheMMR’scapabilitywastheadditionofasecondfiringtrack,permittingstudiesofpassingtrainsattwodifferenttrackseparations.Thiswascompletedin1992.FurtherdetailsoftheMMRdevelopmentarereportedbyDalleyandJohnson(1999).

AlthoughthereareothermovingmodelfacilitiesforthestudyofrailwaytunnelaerodynamicsinJapanandtheNetherlands(DalleyandJohnson,1999),theMMRisuniqueinseveralaspects.Theotherfacilitiesuseaxi-symmetrictrainmodelswhichcorrectlyrepresentthecross-sectionalareaevolutionofthetrainsbeingstudied,andthesearefiredalongwiresthroughthecentreofpipesrepresentingthetunnelsofinterest.Thesefacilitiesareusedtostudypressurewavephenomenainrailwaytunnels.Bycontrast,theMMRhasrealisticallydetailedtrainmodelsthatrunalongtracksfittedalongthebottomofthetunnel,muchasinreallife.Thisallowstheeffectoftraindesigndetailstobeaccuratelycapturedaswellasmodellingthecorrectrelationshipbetweenthetrainandtheground.Furthermore,theMMRisafacilitywhichisnotjustlimitedtothestudyofrailwaytunnelaerodynamics,butcanalsobeusedtostudytheaerodynamicphenomenageneratedbytrainsrunningintheopenair.

MECHANISMOFTHEMMR

Overview

TheMMRconsistsoftwoparallelfiringtrackswithoveralllengthof150m.Athirdtrack,atawidertrackspacingisalsoinplaceandcanbeconfiguredtoallowmodelstofiredalongit.Thereisacentraltestsectionof50minlength.Eitherendofthetestsectionthereisanaccelerationsectionandabrakingsection,eachabout50mlong.Theparalleltracksallowmodelstobefiredfromoppositeendsiftraincrossingeffectsareofinterest.

Thecentraltestsectionhasabuilt-upflooronwhichmodeltunnelscanbelocatedfortunnelaerodynamictesting.At1/25thscale,thisallowstunnelsuptoafull-scalelengthof1250mtobemodelled.Suchtunnelsneedtobecarefullypressure-sealedtothetestsectionbasetoensurethatthereisnoleakagetoatmosphereofthetrain-generatedpressuresfromthetunnelsduringtesting.

Oncethemodelhasbeenlaunched,itwilltravelatapproximatelyconstantspeedoverthetestsection,unlessthereisamodeltunnelinplace.Inthiscase,thetrainlosesabout1-2m/sinspeedduetotheincreasedaerodynamicresistanceinthetunnel.

Realistictrainmodels,usuallybuiltto1/25thscale,aretestedontheMMR.Theyareusuallyoffourvehiclesupto4minlength,whichnormallyisadequatefortheinvestigationoftrainaerodynamics,inordertolimitmodelweight.Themodelsthemselvesareconstructednowadaysusinglightweightexpandedfoam,shapedusinganaccuratelymanufacturedmould.Theyarebuiltaroundanaluminiumchassisattachedtowheelsonwhichthemodelactuallyruns.Thetrainbogiesandwheelsareconstructedfrombalsawoodandareattachedtothemodeltrains.Othermaterialswereusedinthepastformodelconstruction,butfoamoffersagoodcompromisebetweenstrength,weightandeaseofreplacement.Typicalmodelweightsarebetweenthreeandeightkilogrammes.AtrainmodelisshownontheMMRinFigure1.

Figure1TrainmodelontheMovingModelRigatDerby

Duetotherealismofthetrainmodels,aerodynamicmeasurementsontheMMRhavebeenfoundtoreplicatefullscaleveryaccurately,aswillbeshowninthebriefcasestudiespresentedlaterinthispaper.Onlyintheunderbodyregionofthetrain,betweenthetracks,doestheflowaroundthemodeltrainnotreplicatefullscale.Thisisduetothemodelstracks,whichdonotmodelrealrails,astheyarerequiredtorestrainthemodelfromliftingduringacceleration,andthechassiswheels.

AccelerationSection

Thetrainmodelsarepoweredby,whatisineffect,abungeerubbercatapult.Severallargeelasticbungeecordsaretensionedtogetherusinganelectricwinchpriortomodellaunch.Typically,thebungeesareloadedbetween7-11kN,dependingontheweightofthemodelandthespeedrequiredforthemodelrun.Whenreleased,theenergystoredinthebungeesistransmittedviaafiringcordpassingthroughacomplexpulleygearingsystemtothemodel,whichisthenaccelerateduptospeedintheaccelerationsection.Asthetrainmodelreachesacertainpointalongtheaccelerationsectionthecord,whichisattachedtoahookunderthemodel,dropsoffandthemodelproceedstocoastalongthetrackstothetestsection.

Thepulleygearingsystemisneededtocontroltheratethattheenergyistransmittedtothemodel,whichwouldotherwisebedamagedbytheacceleration.Thetopspeedachievedusingafullmodelis305km/halongthetestsection.

TheschematicoftheMMR,showninFigure2,showstheaccelerationsectionandmechanisminmoredetail.

MovingModelRig

Figure2SchematicoftheMovingModelRig,showingtheaccelerationandbrakingsystems

BrakingSection

Oncethemodelhaspassedthroughthetestsection,itentersthebrakingsection.Here,ahookunderthetrainmodelpicksupacordattachedtoapistonviaasecondpulleysystem.Themovingmodeldrawsthepistonintoadeformabletube,anditisthedeformationenergywhichcausesthemodeltoslowdownandstop.Again,apulleygearingsystemisnecessarytoreducethebrakingrateandtominimisedamagetothetrainmodel.Figure2showsmoredetailsofthebrakingsectionandbrakingmechanism.

Instrumentation

MeasurementsareusuallymadeontheMMRusingground-basedinstrumentation,mountedeitherattracksideorinthemodeltunnels.Fourteenchannelsofmeasurementdatacanbeloggedsimultaneously.Pressuretransducersareusedforpressuremeasurements,andeightchannelsofhotwireanemometryarealsoavailableformeasuringairspeeds.Trainpositionandspeedismeasuredusinglasereventdevicesatthestartofthetestsection.Highdatasamplingratesarerequiredaseventsoccurat25timesfasterthanreallifeforascaleof1/25th.

Bespokesoftwarecontrolstensioningthebungees,modelfiring,safetyanddataacquisition.Allsignalsaredigitisedandrecordedusingthesamesystem,whichallowsthemeasurementdatatobeviewedstraightaftereachrunforcheckingpurposes.

Thereisal

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2