基于8031单片机温度控制系统设计.docx

上传人:b****3 文档编号:5893910 上传时间:2023-05-09 格式:DOCX 页数:42 大小:912.38KB
下载 相关 举报
基于8031单片机温度控制系统设计.docx_第1页
第1页 / 共42页
基于8031单片机温度控制系统设计.docx_第2页
第2页 / 共42页
基于8031单片机温度控制系统设计.docx_第3页
第3页 / 共42页
基于8031单片机温度控制系统设计.docx_第4页
第4页 / 共42页
基于8031单片机温度控制系统设计.docx_第5页
第5页 / 共42页
基于8031单片机温度控制系统设计.docx_第6页
第6页 / 共42页
基于8031单片机温度控制系统设计.docx_第7页
第7页 / 共42页
基于8031单片机温度控制系统设计.docx_第8页
第8页 / 共42页
基于8031单片机温度控制系统设计.docx_第9页
第9页 / 共42页
基于8031单片机温度控制系统设计.docx_第10页
第10页 / 共42页
基于8031单片机温度控制系统设计.docx_第11页
第11页 / 共42页
基于8031单片机温度控制系统设计.docx_第12页
第12页 / 共42页
基于8031单片机温度控制系统设计.docx_第13页
第13页 / 共42页
基于8031单片机温度控制系统设计.docx_第14页
第14页 / 共42页
基于8031单片机温度控制系统设计.docx_第15页
第15页 / 共42页
基于8031单片机温度控制系统设计.docx_第16页
第16页 / 共42页
基于8031单片机温度控制系统设计.docx_第17页
第17页 / 共42页
基于8031单片机温度控制系统设计.docx_第18页
第18页 / 共42页
基于8031单片机温度控制系统设计.docx_第19页
第19页 / 共42页
基于8031单片机温度控制系统设计.docx_第20页
第20页 / 共42页
亲,该文档总共42页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于8031单片机温度控制系统设计.docx

《基于8031单片机温度控制系统设计.docx》由会员分享,可在线阅读,更多相关《基于8031单片机温度控制系统设计.docx(42页珍藏版)》请在冰点文库上搜索。

基于8031单片机温度控制系统设计.docx

基于8031单片机温度控制系统设计

基于8031单片机温度控制系统设计

摘要

随着国民经济的发展,人们需要对各种加热炉、热处理炉、烘干箱温度进行监测和控制。

采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

本设计以MCS-51单片机为基础,结合温度传感变送器、A/D转换器、LED显示器等,组成一个基于MCS-51系列中8031单片机的温度控制系统本设计,对烘干箱的温度进行检查与控制。

温度控制误差≤±2℃。

烘干时显示实时温度,显示精确到1℃。

关键词:

单片机,烘干箱,温度控制,过程控制系统

 

baseon8031Singlechiptemperaturecontrolsystemdesign

ABSTRACT

Withthedevelopmentofthenationaleconomy,thereisaneedfora

rietyoffurnace,heattreatmentfurnace,dryingboxtemperaturemonitoringandcontrol.Single-chipcomputertocontrolnotonlyhascontroloftheirconvenience,simplicityandflexibilityadvantages,butalsosubstantialincreaseintemperaturewaschargedwithtechnicalindicators,whichcangreatlyimprovethequalityandquantityofproducts.

TheMCS-51designisbasedonsingle-chip,combinedwithtemperaturesensingtransducer,A/Dconverter,LEDdisplayandsoon,basedontheformationofaMCS-51seriesof8031single-chiptemperaturecontrolsystemforthedesign,thetemperatureofthedryingboxtocheckandcontrol.Temperaturecontrolerror≤±2℃.Displayreal-timetemperatureofdrying,indicatingaccurateto1℃.

KEYWORDS:

microcontroller,drybox,temperaturecontrol,processcontrolsystem.

 

目 录

附图

 

前言

在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

因此,单片机广泛用于现代工业控制中。

本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。

论文的主要内容包括:

采样、滤波、键盘、LED显示和报警系统,加热控制系统,单片机MCS-51的开发以及系统应用软件开发等。

作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。

 

第1章绪论

 

1.1概述

随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。

其中,温度是一个非常重要的过程变量。

例如:

在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制。

然而,用常规的控制方法,潜力是有限的,难以满足较高的性能要求。

采用单片机来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

1.2单片机技术简介

1.2.1单片机技术的发展

所谓单片机是指在一个集成芯片中,集成微处理器、存储器、基本的I/0接口以及定时/计数、通信部件,即在一个芯片上实现一台微型计算机的基本功能。

1970年微型计算机研制成功之后,随着就出现了单片机(即单片微型计算机)。

美国Intel公司1971年生产的4位单片机4004和1972年生产的雏形8位单片机8008,特别是1976年MCS-48单片机问世以来,在短短的二十几年间,经历了四次更新换代,其发展速度大约每二、丁三年要更新一代、集成度增加一倍、功能翻一番。

其发展速度之快、应用范围之广,己达到了惊人的地步。

尽管日前单片机的品种很多,但其中最具典型性的当数Intel公司的MCS-51系列单片机。

MCS-51是在MCS-48的基础上于80年代初发展起来的,虽然它仍然是8位的单片机,但其功能有很大的增强。

由于PHILIPS,ATMEL,WELBORD,LG等近百家IC制造商都主产51系列兼容产品,具有品种全、兼容性强、软硬件资料丰富等特点。

因此,MCS-51应用非常广泛,成为继MCS-48之后最重要的单片机品种。

直到现在MCS-51仍不失为单片机中的牡流机型。

国内尤以Intel的MCS-51系列单片机应用最广。

由于8位单片机的高性能价格比估计近十年内,8位单片机仍将是单片机中的主流机型。

1.2.2单片机技术的应用

随着计算机技术的发展和在控制系统中的广泛应用,以及设备向小型化、智能化发展,作为高新技术之一的单片机以其体积小、功能强、价格低廉、使用灵活等优势,显示出很强的生命力。

它和一般的集成电路相比有较好的抗干扰能力,对环境的温度和湿度都有较好的适应性,可以在工业条件下稳定工作。

且单片机广泛地应用于各种仪器仪表,使仪器仪表智能化,提高它们的测量速度和测量精度,加强控制功能。

如Mcs-51系列单片机控制的“船舶航行状态自动记录仪”、“烟叶水分测试仪”、“智能超声波测厚仪”等。

单片机也广泛地应用于实时控制系统中,例如对下SID卜各种窑炉的温度、酸度、化学成分的测量和控制。

将测量技术、自动控制技术和单片机技术相结合,充分发挥其数据处理功能和实时控制功能,使系统工作处于最佳状态,提高系统的生产效率和产品质量。

从航空航天、地质石油、冶金采矿、机械电子、轻工纺织等行业的分布系统与智能控制以及机电一体化设备和产品,到邮电通信、日用设备和器械,单片机都发挥了巨大作用。

其应用大致可分为以下儿方面:

1.机电一体化设备的控制核心

机电一体化是机械设备发展的方向。

单片机的出现促进了机电一体化技术的发展,它作为机电产品的控制器,充分发挥其自身优点,大大强化了机器的功能,提高了机器的自动化、智能化程度。

最典型的机电产品机器人,每个关节或动作部位都是个单片机控制系统。

2.数据采集系统的现场采集单元

大型数据采集系统,要求数据采集的同步性和实时性要好。

使用单片机作为系统的前端采集单元,由主控计算机发出采集命令,再将采集到的数据逐一送到主计算机中进行处理。

如有些气象部门、油田采油部门以及电厂等均可采用这样的系统。

3.分布控制系统的前端控制器

在直接控制级的计算机分布控制系统(DCS)中,单片机作为过程控制中每一分部操作或控制的控制器,进行数据采集、反馈计算、控制输出,并在上位机命令的指挥下进行相应协调工作。

4.智能化仪表的机芯

自动化仪表的智能化程度越来越高。

采用单片机的智能化仪表可具有自整定、自校正、自动补偿和自适应功能,还可进行数字PID调节,软件消除电流热噪声等等,解决传统仪表所不能解决的难题。

单片机的应用使这种性能如虎添翼,如自动计费电度表、燃气表中己有这方面的应用。

许多工业仪表中的智能流量计,气体分析仪、成分分析仅等也采用了这项技术。

甚至有的保健治疗仪中也采用了单片机控制。

5.消费类电子产品控制

该应用主要反映在家电领域,如洗衣机、空调器、保安系统、VCD视盘机、电子秤、IC卡、手机、BP机等。

这些设备中使用了单片机机芯后,大大提高了其控制功能和性能,并实现了智能化、最优化控制。

6.终端及外围设备控制

计算机网络终端设备,如银行终端、商业POS(自动收款机)以及计算机外围设备如打印机、通信终端和智能化UPS等。

在这些设备中使用单片机,使其具有计算、存储、显示、输入等功能,具有和计算机连接的接口,使计算机的能力及应用范围大大提高。

本课题以单片机作为控制器之一,进一步研究单片机在自动化检测领域中的应用。

 

第2章元器件介绍

 

2.1单片机系统主机的选择

2.1.1单片机的主流系列及机型选择

1.Intel公司的MCS-48(8位机):

8位CPU,并行I/O口,8位定时/计数器寻址范围不大于4k,且无串行口,属于初级单片机,功能小,易于控制。

2.Intel公司的MCS-51(8位机):

多级中断处理系统,8位定时/计数器。

RAM,ROM寻址范围可达64k字节,且带有串行I/O口,此类单片机应用领域极其广泛。

且货源充足,其在国内的主流的地位有可能稳定一个相当时期。

因考虑频率的显示程序中需使用串行输出,而MCS-48系列无串行口,且寻址范围过小,故不易实现产品的功能,MCS-51系列单片机功能全面,可靠性高,容易达到产品的性能指标,且货源充足,性能价格比较高。

MCS-96虽功能强大,但本次设计频率计软件对单片机性能要求较低,且MCS-96价格昂贵故MCS-51系列能基本满足要求,是首要选择。

MCS-51系列中又以8031、8051、8751为代表。

它们之间最大的差别在于片内ROM的供应状态。

在8051和8751中,片内有4k字节的ROM/EPROM,而8031片内无ROM/EPROM,故如选择8031,片外必须扩展EPROM,由于8031相对8051、8751供应状态相对充足,且性价比较高,故本设计中选用8031单片机作为控制芯片。

2.2温度传感器

在本次的设计中,我所采用的是热电阻。

热电阻测温的基础是大多数金属导体的电阻率温度升高而增大,具有正的温度系数。

在工业上广泛应用的热电阻温度计一般用来测量-200~+500℃范围的温度,随着科学技术的发展热电阻温度计的测量范围低温端可达1K左右,高温端可测到1000℃。

热电阻温度计的特点是精度高,适宜于测低温。

在560℃以下的温度测量时,它的输出信号比热电偶容易测量。

(1)纯金属是热电阻的主要制造材料,热电阻的材料应具有以下的特性:

①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

②电阻率高,热容量小,反应速度快。

③材料的复现性和工艺性好,价格低。

④在测温范围内化学物理特性稳定。

(2)铂电阻

目前,在工业中应用最广的铂和铜,并已制作成标准温热电阻。

铂电阻的特点是精度高,稳定性好,性能可靠。

铂在氧化性气氛中,甚至在高温下的物理、化学性质都非常稳定。

因此铂被公认为是目前制造热电阻的最好材料。

铂电阻与温度之间的关系接近于线性,在0630.74℃范围内可用下式表示:

Rt=R0(1+At+Bt^2)。

在-190~0℃范围内为Rt=R0(1+At+Bt^2+Ct^3)。

该式中,R0、Rt为温度0时铂电阻的电阻值,t为任意温度,A、B、C为温度系数,由实验确定,A=3.9684*10-3/℃,B=-5.847*10^-7/℃,C=-4.22*10^-12/℃。

由上面的两个式子可以看出,当R0值不同时,在同样的温度下,其Rt值也不同。

目前国内统一设计的一般工业用标准铂电阻值R0有100欧和500欧两种,并将电阻值Rt与温度t的相应关系统一列成表格称其为铂电阻的分度表,分度号分别用Pt100和Pt500表示。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033K-961.78℃标准温度计来使用。

铂电阻广泛应用于-200~850℃范围内的温度测量,工业中通常在600℃以下。

2.3

2864A介绍

电擦除电可编程只读存储器是近年来被广泛应用的一种新产品。

其优点是能使CPU在线修改其中的数据,并可在断电情况下保存数据,集EPROM和RAM功能一体。

Intel2864A是8k×8位

,单±5V供电,最大工作电流为140mA,维持电流60mA,其24脚的管脚及原理图见图2-1。

由于片内设有编程所需的高压脉冲产生电路,因此无需外加编程电源和写入脉冲。

 

 

图2-12864A管脚及原理框图

(a)管脚;(b)原理图

2864A有4种工作方式,如表2-1所示。

表2-12864A工作方式

方式

控制脚

I/

~I/

读出

L

L

H

输出信息

写入

L

H

L

数据输出

维持

H

X

X

高阻

禁止写

X

L

X

禁止写

X

X

H

1.维持和读出方式:

2864A的维持和读出方式与普通EPROM完全相同。

2.写入方式:

2864A提供了两种数据写入操作方式,即字节写入和页面写入。

3.数据查询方式:

数据查询方式是指用软件来检测写操作中的“页存储”周期是否完成。

在“页存储”期间,如进行写操作,读出的是最后写入的字节,若芯片的转储工作未完成,则读出数据的高位是原来写入字节最高位的反码,据此,CPU可判断芯片的编程是否结束。

2846A与8031的接口电路如图2-2所示。

 

 

图2-22864A与8031的接口电路

2.4ADC0809介绍

A/D转换电路很多,选择A/D转换器件主要从速度.精度和蔼价格等方面行考虑,根据A/D转换器的工作原理,可以分为下面的三种类型:

①并行A/D变换器:

速度高,价格也很昂贵,用于高速(如视频处理场合)。

②逐次逼近型A/D转换器:

精度速度价格方面比较折衷,是最常用的一种A/D转换器。

③双积分型A/D转换器:

精度高,抗干扰能力強,价格低,但是速度慢,常用于測量仪表等场合。

2.4.1ADC0809转换器及其接口电路

ADC0809是8位CMOS逐次逼近式A/D转换器。

内部有8路模拟量输入通道和8位数字量输出的A/D转换器,它是美国国家半导体公司的产品,是目前国内最广泛的8位通用的A/D转换的芯片。

启动信号为脉冲启动方式,最大可调误差为±1LSB。

ADC0809内部设有时钟电路,故CLK时钟需由外部输入。

其内部结构图如下图2-3所示。

 

图2-3ADC0809的内部结构

片内带有锁存功能的8路模拟多路开关,可对8路输入模拟信号分时转换,具有多路开关的地址译码和锁存电路、8位A/D转换器和三态输出锁存器等。

在时钟脉冲的同步下,控制逻辑先使N位寄存器的D7位置1(其余位为0),此时该寄存器输出的内容为80H,此值经DAC转换为模拟量输出VN,与待转换的模拟输入信号VIN相比较,若VIN大于等于VN,则比较器输出为1.于是在时钟脉冲的同步下,保留D7=1,并使下一位D6=1,所得新值(C0H)再经DAC转换得到新的VN,再与VIN比较,重复前述过程.反之,若使D7=1后,经比较,若VIN小于VN,则使D7=0,D6=1,所得新值VN再与VIN比较,重复前述过程.依次类推,从D7到D0都比较完毕,转换便结束.转换结束时,控制逻辑使EOC变为高电平,表示A/D转换结,此时的D7~D0即为对应于模拟输入信号VIN的数字量。

如图2-4所示ADC0809与8031的接口电路。

 

 

图2-4ADC0809与8031的接口电路

2.4.2ADC0809引脚介绍

ADC0809采用双列直插式封装,共有28条引脚,如2-5图所示。

 

图2-5ADC0809引脚图

1.IN0--IN7

IN0—IN7为8路模拟电压输入线,用于输入被转换的模拟电压

2.ADDA,ADDB,ADDC

三位地址输入端。

八路模拟信号转换选择同由ABC决定。

A为低位,C为高位。

A、B、C三位地址的输入与8路通道的对应关系如表2-2下:

表2-2A、B、C三位地址的输入与8路通道的对应关系

ABC三位地址的输入与8路通道的对应关系

地址

编码

C

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

A

0

1

0

1

0

1

0

1

选中通道

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

3.CLK

外部时钟输入端,时钟频率高,A/D转换速度快。

允许范围为10--1280KHZ,典型值为640KHZ,此时,A/D转换时间为10us。

通常由MCS-51型单片机ALE端直接或分频后与其相连。

当MCS-51型单片机无读写外,RAM操作时,ALE信号固定为CPU时钟频率的1/6,若单片机外接的晶振为6MHZ,则1/6为1MHZ,A/D转换时间为64us。

4.D0--D7

数字量输出端,A/D转换的结果由这几个端口输出。

5.OE

A/D转换结果输出允许控制端,当OE端为高电平时,允许将A/D转换结果从D0--D7端输出。

通常由MCS-51型单片机的RD端和ADC0809片选端(例如P2.0),通过或非门与ADC0809的OE端相连接。

当DPTR为FEFFH,且执行“MOVXA,@DPTR”指令后,RD和P2.0均有效,或非后产生高电平,使ADC0809的OE端有效,ADC0809将A/D转换的结果送入数据总线P0口,CPU在读入中。

6.ALE

地址锁存允许信号。

八路模拟通道地址由A,B,C输入在ADC0809的ALE信号有效时,将该八路地址锁存。

7.START

启动A/D转换信号。

当START端输入一个正脉冲时,立即启动ADC0809进行A/D转换。

START端与ALE端连在一起,由MSC-51型单片机WR和ADC0809片选端(例如P2.0)。

通过或非门连接,当DPTR为FEF8H时,执行“MOVX@DPTR,A”指令后,将启动ADC0809模拟通道0的A/D转换。

FEF8H~FEFFH分别为八路模拟输入通道的地址。

执行MOVX写指令,并非真的将A中的内容写进ADC0809中,ADC0809中没有一个寄存器,能容纳的A中的内容。

ADC0809的输入通道是IN0~IN7,输出通道是D0~D7,因此,执行:

“MOVX@DPTR,A”指令与A中内容无关,但DPTR地址应指向当前A/D的通道地址。

8.EOC

A/D转换结束信号。

当ADC0809启动A/D转换后,EOC输出低电平,转换结束后,EOC输出高电平,表示可以读取A/D转换的结果。

该信号取反后若与MCS-51型单片机引脚INT0或INT1连接,可引发CPU中断,在中断服务程序中读A/D转换的数字信号,若与MCS-51型单片机两个中断源已用完,则EOC也可与P1口或P3口的一条端线相连,不采用中断方式,采用查询方式,查得EOC为高电平后,再读入A/D转换的值。

9.VREF+,VREF-

正负基准电压输入端。

正基准电压的典型值为+5V,可与电源电压+5V相连,但电源电压往往有一定的波动,将影响A/D转换的精度。

因此,精度要求较高时,可用高稳定基准电源输入。

当模拟信号电压较低时,基准电压也可取低于5V的数值。

10.VCC,GND

VCC,GND:

正电源电压端和地端。

2.5七段码LED显示器

LED数码管是由发光二极管作为显示字段的数码型显示器件。

图2-7(a)为0.5inLED数码管的外形和引脚图,其中七只发光二极管分别对应a~g笔段构成八字形另一只发光二极管Dp作为小数点。

因此这种LED显示器称为七段数码管或八段数数码。

LED数码管按电路中的连接方式可以分为共阴型和共阳型两大类。

共阳型是将各段发光二极管的正极连在一起,作为公共端COM,公共端COM接高电平,a~g、Dp各笔段通过限流电阻接控制端。

某笔段控制端低电平时,该笔段发光,高电平时不发光。

控制某几段笔段发光,就能显示出某个数码或字符。

LED的共阴极和共阳极的结构图如图2-5(a)、(b)、(c)所示。

 

(a)(b)(c)

图2-57段LED数码显示器

(a)符号和引脚;(b)共阴极;(c)共阳极

LED数码管按其外形尺寸有多种形式,使用较多的是0.5in和0.8in;按显示颜色也有多种形式,主要有红色和绿色;按亮度强弱可分为高亮和普亮,指通过同样的电流显示亮度不一样,这是因发光二极管的材料不一样而引起的。

LED数码管的使用与发光二极管相同,根据其材料不同正向压降一般为1.5~2V额定电流为10mA,最大电流为40mA。

静态显示时取10mA为宜,动态扫描显示可加大,可脉冲电流,但一般不超过40mA。

2.5.1LED数码管编码方式

当LED数码管与单片机相连时,一般将LED数码管的各笔段引脚a、b、…、g、Dp按某一顺序接到MCS-51型单片机某一个并行I/O口D0、D1、…、D7,当该I/O口输出某一特定数据时,就能使LED数码管显示出某个字符。

例如要使共阳极LED数码管显示“0”,则abcdef各笔段引脚为低电平,g和Dp为高电平,如2-2表所示。

 

表2-2共阳极LED数码管显示数字“0”时各管段编码

CD7

D6

D5

D4

D3

D2

D1

D0

字段码

显示数

Dp

G

f

e

D

C

b

a

1

1

0

0

0

0

0

0

C0H

0

C0H称为共阳LCD数码管显示“0”的字段码,不计小数点的字段码称为七段码,包括小数点的字段称为八段码。

LED数码管编码方式按小数点计否可分为七段码和八段码;按共阴共阳可分为共阴字段码和共阳字段码,不计小数点的共阴字段码与共阳字段码互为反码;按a、b、…、g、Dp编码顺序是高位在前,还是低位在前,又可分为顺序字段码和逆序字段码。

甚至在某些特殊情况下将a、b、…、g、Dp顺序打乱编码。

下表2-3为共阴和共阳LED数码管几种八段编码表。

表2-3共阴和共阳LED数码管几种八段编码

共阴顺序小数点暗`

共阴逆序小数点暗

共阳顺序

小数点亮

共阳顺序

小数点暗

Dpgfedcba

16进制

abcdefgdp

16进制

0

00111111

3FH

11111100

FCH

40H

C0H

1

00000110

06H

01100000

60H

79H

F9H

2

01011011

5BH

11011010

DAH

24H

A4H

3

01001111

4FH

111100

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2