自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx

上传人:b****2 文档编号:5903058 上传时间:2023-05-05 格式:DOCX 页数:80 大小:368.67KB
下载 相关 举报
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第1页
第1页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第2页
第2页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第3页
第3页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第4页
第4页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第5页
第5页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第6页
第6页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第7页
第7页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第8页
第8页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第9页
第9页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第10页
第10页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第11页
第11页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第12页
第12页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第13页
第13页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第14页
第14页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第15页
第15页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第16页
第16页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第17页
第17页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第18页
第18页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第19页
第19页 / 共80页
自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx_第20页
第20页 / 共80页
亲,该文档总共80页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx

《自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx(80页珍藏版)》请在冰点文库上搜索。

自适应滤波理论的发展与原理毕业论文Word文档下载推荐.docx

6.2.4自适应陷波器33

6.2.5系统辨识或系统建模33

结论35

参考文献36

附录I英文原文及译文37

附录II仿真程序50

致谢64

第一章绪论

1.1自适应滤波理论的发展

早在20世纪40年代,就对平稳随即信号建立了维纳滤波理论。

根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),以线性最小均方误差估计准则所设计的最佳滤波器,称为维纳滤波器。

这种滤波器能最大程度地滤除干扰噪声,提取有用信号。

但是,当输入信号的统计特性偏离设计条件,则它就不再是最佳的了,这在实际应用中受到了限制。

到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。

现在,卡尔曼滤波器已成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。

实质上,维纳滤波器是卡尔曼滤波器的一个特例。

若设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识。

但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。

WidrowB.等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或是根本不需要任何关于信号与噪声的先验统计知识。

这种滤波器的实现差不多像维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。

因此,近十年来,自适应滤波理论的方法得到了迅速发展。

d(n)

4-

图1-1自适应滤波器原理图

图1-1描述的是一个通用的自适应滤波估计问题,图中离散时间线性系统表示一个可编程滤波器,它的冲击响应为h(n),或称其为滤波参数⑹。

自适应滤波器输出信号为y(n),所期望的响应信号为d(n),误差信号e(n)为d(n)与y(n)之差。

这里,期望响应信号d(n)是根据不同用途来选择的,自适应滤波器的输出信号y(n)是对期望响应信号d(n)进行估计的,滤波参数受误差信号e(n)的控制并自动调整使y(n)得估计值y(^)等于所期望的响应d(n).因此,自适应滤波器与普通滤波器不同,它的冲击响应或滤波参数是随外部环境的变化而变化的,经过一段自动调整的收敛时间达到最佳滤波的要求。

但是,自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参数量值,按照一定准则改变滤波参t,以使它本身能有效地跟踪外部环境的变化。

通常,自适应滤波器是线性的,因而也是一种线性移变滤波器。

当然,它可推广到自适应非线性滤波器。

在图1-1中,离散时间线性系统可以分为两类基本结构,其中一类为非递归型横向结构的数字滤波器,它具有有限的记忆,因而称之为有限冲激响应(FIR)系统,即自适应FIR滤波器。

另一类为递归型数字滤波器结构,理论上,它具有无限的记忆,因而称之为无限冲激响应(IIR)系统,即自适应IIR滤波器。

对于上述两类自适应滤波器,还可以根据不同的滤波理论和算法,分为结构不同的自适应滤波器,它们的滤波器性能也不完全相同。

1.2自适应LMS算法的发展

1.2.1LMS算法历史

1955-1966年期间美国通用公司在研制天线的过程中,为抑制旁瓣,由windows和hoff在60年代初提出了基本LMS算法&

争逋后又发展出了归一化算法和加遗忘因子LMS算法4977年'

makjoul提出了格型滤波器,并由此发展出LMS自适应格型滤波器算法°

Herzberg'

cohen和be*ery提出了延时LMS(DLMS)算法。

2002年,尚勇,吴顺君,项海格提出了并行延时LMS算法。

此外,还有复数LMS算法、数据块LMS算法等,在此就不一一列举了。

1.2.2LMS算法的现状

因LMS算法具有低计算复杂度、在平稳环境中的收敛性好、其均值无偏地收敛到wiener解和利用有限精度实现算法时的稳定性等特性,使LMS算法成为自适应算法中应用最广泛的算法。

由于LMS算法的广泛应用,以及在实际条件下,为解决实际问题,基于LMS算法的新LMS类算法不斷出现。

1.2.3LMS算法的发展前景

因LMS算法是自适应滤波器中应用最广泛的算法,所以可以说,自适应滤波的发展前景也就是LMS算法的发展前景。

它主要包括以下几个方面的应用:

1、系统辨识和建模(SystemIdenti仃cationandModeling)。

自适应滤波器作为估计未知系统特性的模型。

2、自适应信道均衡(AdaptiveChannelEqulization)。

在数字通信中采用自适应信道均衡器,可以减小传输失真,以及尽可能地利用信道带宽。

3、回波消除(EchoCance11ation)°

在2线和4线环路系统中,线路间存在杂散电路耦合,这些杂散导致阻抗不匹配,从而形成了信号的反射,也就是我们在线路两端听到的回声。

这种回波能对高速数据传输造成灾难性的后果。

回波消除就是预先估计一个回波,然后用返回信号来减此回波,从而达到回波消除的目的。

消除心电图中的电源干扰就是它的一个具体应用。

4、线性预测编码(LinearPredictiveCoding)。

近年来,对语音波形进行编码»

它可以大大降低数据传输率。

在接收端使用LPC分析得到的参数,通过话音合成器重构话音。

合成器实际上是一个离散的随时间变化的时变线性滤波器。

时变线性滤波器既当作预測器使用,又当作合成器使用。

分析语音波形时作预测器使用,合成语音时作话音生成模型使用。

5、自适应波束形成(AdaptiveBeaaniforming)频谱资源越来越紧,利用现有频谱资源进一步扩展容量成为通信发展的一个重要问题。

智能天线技术利用阵列天线替代常规天线,它能够降低系统干扰,提高系统容量和频谱效率,因此智能天线技术受到广泛关注。

自适应束波形成通过调节天线各阵元的加权幅度和相位,来改变阵列的方向图,使阵列天线的主瓣对准期望用户,从而提高接收信噪比,满足某一准则下的最佳接收。

在雷达与声纳的波束形成中,自适应滤波器用于波束方向控制,并可在方向图中提供一个零点以便消除不希望的干扰。

其应用还有噪声中信号的滤波、跟踪、谱线增强以及预测等。

第二章自适应LMS算法的研究

2.1概述

自适应算法中使用最广的是下降算法,下降算法的实现方式有两种:

自适应梯度算法和自适应高斯-牛顿算法。

自适应高斯-牛顿算法包括RLS算法及其变型和改进型,自适应梯度算法包括LMS算法及其变型和改进型肌)-

滤波器设计准则是使滤波器实际输出y(n)与期望响应d(n)之间的均方误差J(n)为最小,这称为最小均方误差(MMSE)准则。

••e(n)

S———丿

图2-1FIR滤波器的自适应宪现

图2.1为FIR滤波器的自适应实现的原理图。

所谓自适应实现是指;

M阶FIR滤波器的抽头权系数wo,\vi,…,wm可以根据估计误差e(n)的大小自动调节,使得某个代价函数最小°

定义均方误差J(n)为代价函数,因为滤波器在n时刻的估计误差

e(n)=d(n)-wHx(n)(2-1)

所以代价函数

J(n)=E{|e(n)|2}=E{|d(n)-wH(n)|2}(2-2)

由此可得J(n)的梯度

VJ(n)=2E{x(n)H(n)}w(n)-2E{x(n)d*(n)}(2-3)

2.2LMS算法

最陡下降算法不需要知道误差特性曲面的先验知识,其算法就能收敛到最佳维纳解,且与起始条件无关⑹。

但是最陡下降算法的主要限制是它需要准确测得每次迭代的梯度矢量,这妨碍了它的应用。

为了减少计算复杂度和缩短自适应收敛时间许多学者对这方面的新算法进行了研究。

1960年,美国斯坦福大学的Windrow等提出了最小均方(US)算法,这是一种用瞬时值估计梯度矢量的方法,即

&

何=響j叽)(2-4)

可见,这种瞬时估计法是CW(n)无偏的,因为它的期望值

E[V(«

)1确实等于矢fV(/7)。

所以,按照自适应滤波器滤波系数矢量的变化与梯度矢量估计的方向之间的关系,可以先写出LMS算法的公式如下:

(2-5a)

(2-5b)

AA]

w(n+1)=w(n)+—〃[_▽(〃)]

2

A

=w(n)+“e(n)x(n)

将式e(n)=d(n)-y(n)和式(2-1)代入到上式中、可得到

AA

w(n+l)=w(n)+/zv(/:

)[t/(H)-w(n)x(n)]

=[I-jLix(n)xn(n)]vv(/7)+/^(n)^(n)(2-6)

w(n+I)w(n)

图2-2自适应LUS算法信号流图

由上式可以得到自适应LMS算法的信号流图,这是一个具有反馈形式的模型,如图2-2所示。

如同最陡下降法,我们利用时间n=0的滤波系数矢量为任意的起始值w(0),然后开始LMS算法的计算,其步骤如下。

(1)由现在时刻n的滤波器滤波系数矢量估值;

S),输入信号矢量x(n)以及期望信号

d(n),计算误差信号:

e(n)=d(n)-x//(n)vv(n)(2-7)

(2)利用递归法计算滤波器系数矢量的更新估值:

w(n+1)=vv(z?

)+/zf(/?

)x(n)(2-8)

将时间指数n增加1,回到步骤

(1),重复上述计算步骤,一直到达稳态为止。

由此可见,自适应LMS算法简单,它既不要计算输入信号的相关函数,又不要求矩阵之逆,因而得到了广泛的应用。

但是,由于LMS算法采用梯度矢量的瞬时估计,它有大的方差,以致不能获得最优滤波性能⑶。

下面我们来分析LMS算法的性能。

2.2.1自适应收敛性

自适应滤波器系数矢量的起始值w(0)是任意的常数,应用LNS算法调节滤波器系数具有随机性而使系数矢量w(n)带来非平稳过程。

通常为了简化LMS算法的统计分析,往往假设算法连续迭代之间存在以下的充分条件:

(1)每个输入信号样本矢量x(n)与过去全部样本矢量x(k),k=O,l,・・・,n-1是统计独立的,不相关的,即有

E[x(n)x"

(k)]=O;

k=0,1,•••,n-1(2-9)

(2)每个输入信号样本矢量x(n)与全部过去的期望信号d(k),k=0,l,-,n-l也是统计独立的,即有

E[x(n)d(k)]=O;

k=0,1,-,n-l(2-10)

(3)期望信号样本d(n)依赖于输入过程样本矢量x(n),但全部过去的期望信号样本是独立的。

(4)滤波器抽头输入信号矢量x(n)与期望信号d(n)包含着全部n的共同的高斯分布随即变量。

通常,将基于上述基本假设的LMS算法的统计分析称为独立理论(GendependenceTheory)[6]

由式(2-6)可知,自适应滤波器在n+1时刻的滤波系数矢量w(n+1)依赖与三个输入:

(1)输入过程的过去样本矢量x(k),k=n,n-1,•••,0;

(2)期望信号的以前样本值d(k),k=n,n-1,-,0;

(3)滤波器系数矢量的起始值vv(O)<

从上述基本假设

(1)和

(2)的观点来看,我们可发现滤波器系数矢量w(n+1)是与x(n+1)和d(n+l)独立无关。

这点是很有用的,而且在后续分析中将被重复使用。

当然,有许多实际问题对于输入过程与期望信号并不满足上述基本假设。

尽管如此,LMS算法的实践经验证明,在有足够的关于自适应过程结构信息的条件下,基于这些假设所分析

的结果仍可用作可靠的设计指导准则>

技术某些问题带有依赖的数据样本。

为了分析问题,现在我们将系数误差矢fAw(n)代入式(2-6)的右边,得到

w(n+1)=[/—f.ix(n)xH(n)][Aw(n)+w0]+/jx{n)d(n)

=[/-px(n)xu(w)]Aw(h)+vv()+p[x(n)d(n)—x(h)xH(w)w0]

式中是最佳滤波系数矢量仏w(n)是误差矢量吻将移至等式左边,则w(“+l)-%等于系数误差的跟新值,于是上式可写成

△W(n+1)=[I-px(ti)xH(〃)]△vv(n)+p[x{n)d(n)一x(n)xu(n)w0](2-11)

对于上式两边取数学期望,得到

E[Aw(n+1)]=£

"

{[/-/Jx(n)xu(w)Aw(w)]}+/.£

[x(n)d(n)—x(n)xu(n)w0]

=(/-/iE[x(n)xH(/?

)])£

[Avv(/7)]+jl£

[x(h)cI(n)}-/iE[x(n)xH(n)]w0

=(/-/z/?

)£

[Aw(n)]+“(P-Rw(J(2-12)

显然,上式中R为输入信号矢量x(n)的相关矩阵,而P为输入信号矢量x(n)与期望信号d(n)的互相关矩阵。

根据自适应滤波的正则方程的矩阵式,上式右边第二项应等于零。

由此可简写成

£

[△w(/z+l)](/-/z/?

)E[Avv(/?

)]

(Z-ld)

我们可以看出,LMS算法与前述最陡下降算法有相同的精确数学表达式。

因此,要使LMS算法收敛于均值,必须使步长参数“满足下列条件:

O<

//<

(2-14)

这里兄max是相关矩阵R的最大特征值。

在此条件下,当迭代计算次数n接近于0C时,自适应滤波系数w(n)近似等于最佳维纳解wii

2.2.2平均!

^已一一学习曲线

如前节所述,最陡下降算法每次迭代都要精确计算梯度矢量,使自适应橫向滤波器权矢量或滤波系数矢量w(n)能达到最佳维纳解側,这时滤波器均方误差(MSE)为最小,即式中,龙是期望信号d(n)的方差。

§

min=b;

-2P(2-15)

学习曲线定义为均方误差随迭代计算次数n的变化关系,如式(2-16)所描述的包含指

纟(“)=益+工人(1—灿)2"

分(0)

f.■一-医-irt!

ipxI

Ei1*工c・•■・•工ce*l・JUl・・fitirv"

*l

数项之和:

(2-16)

图2-3单条学习曲线

式中每个指数项对应于算法的固有模式,模式的数目等于滤波器加权数。

显而易见,由于上式中1-/几vl,故当n->

oo,最陡下降算法均方误差F(^)=An)n.但LMS算法用瞬时值估计梯度存在误差的噪声估计,结果使滤波器权矢量估值;

S)只能近似于最佳维纳解,这意味着滤波均方误差筑仍随着迭代次数n的增加而出现小波动地减少,最后,F(x)不是等于入砂而是稍大于其值,如图2-3所示。

如果步长参数n选用得越少,则这种噪化指数衰减曲线上的波动幅度将减小,即学习曲线的平滑度越好⑹。

但是,对于自适应横向滤波器总体来说,假设每个滤波器LMS算法用相同的步长“和同等的起始系数矢量w(0),并从同一统计群体随机地选取各个平稳的各态历经的输入信号,由此计算自适应滤波器总体平均学习曲线。

滤波器的均方误差

("

)=£

+(/7)T?

AW(77)(2-17)

式中△w(n)=w(n)-wQ,称为滤波系数的误差矢量。

为了求总体平均RMS,对式(2-17)两边取数学期望值,有

[歟)]=歹皿讪+E3"

(n)RSw(n)]

由矩阵理论中等式El^bl/a]=tr{E[(bbr)•(“/)]},上式右边第二项可以可写成

E[^w"

(/z)/?

Avv(«

)]=tr[RK(n)](2-18)

式中K(n)=(n)],称之为滤波权系数误差的相关矩阵,因此,平均RMS可以写出

凤飢叭]=久讯+"

[RK(/7)](2-19)

式中»

K(n)可以递归地进行计算。

下面我们推导这个递归公式。

首先把式(2-11)递归计算式写成

AW(Z?

+1)=[/_/2x{n)XH(M)]Aw(H)+

这里,emin(”)=X"

("

Mo。

将上式与其共辄转置矩阵右乘>

得到

Avv(z?

+1)Avpz/(n4-1)=[I—/jx(n)xil(n)]Avv(/i)Aw//(w)[Z—/£

x(n)xn(n)]

+/re^in(n)x(n)xn(n)+pemin(n)[I-x(n)xn(n)]Aw(n)xw(w)

+xz^min(7?

)x(H)Aw(z?

)[/一jLix{n}xn(z?

对上式两边取数学期望»

由于GminS)与x(n)不相关»

且认为△“•(“)与x(n)也不相关,又

E[emm{n}]=0,于是得到K(“)=(«

)]的递归计算公式:

K(n+1)=K(n)-p[RK(n)+K(n)R]+pRtr[RK(n)]+p2<

^minR(2-20)利用酉矩阵相似性变换法,有

QRRQ=4(2-21a)

这里,八是对角线矩阵所含的相关矩阵R的特征值,矩阵Q是由这些特征值相关联的特征矢量所确定的酉矩阵。

注意到矩阵A是实值,并且令

Q舁KgQ=XO)(2-21b)

注意,这里X(n)是一个对再线矩阵。

加上酉矩阵性质Q"

Q=],由式(2-21)得到

[RKg]=tr[QAQ11X(n)QH](2-22)

=tr[Qi\X(n)QH}

因为八是对角线矩阵,矩阵X(n)的对角元素是xf(n),i二1,2,…,礼上式又可写成

tr[RK(n)]=无儿乞⑺)(2-23)

其次,我们利用式(2-21)所描述的变换気萦,将式(2-20)递归计算公式重新写成

X(n+1)=X(n)一“[AX(n)+X(h)A]+//2Arr[AX(n)]+“諸讪A(2-24)

上式表明,只需要计算其对角线项元素/就可得到

M

无(H+1)=Xi(n)-2“<

兀(77)+“2人・远入jXj(n)+“它min人'

i=l,2,…,M2

当n趋于oo时、则兀⑺+1)与兀何的极限相等,于是由上式与式(2-23)得到A/

(2-25)

E[?

(OQ)]与最小均方误差爲“之差

我们定义超量均方误差h(s)等于氐帚似譎方误差

[2?

K(oo)]=—

“歹min艺九

(2-26)

(2-27a)

(2-27b)

乩3)=耳欲s)]-蔬油=tr[RK(oo)]=———

这里人,i=l,2,…,M是相关矩阵R的特征值是自适应滤波器横向抽头数或阶数o当此条件被满足时>LMS算法是绝对收敛的,这是从均方值域保证稳定的条件。

如果将其与均方值域所讨论的稳定条件式(2-14)相比较看,由于九菽仅是工人中的一个最大值,所以,由式(2-27)所表示的稳定条件既是必要的又是充分的。

2.2.3失调

在自适应滤波器中,失调(Misnadjustment)M是衡量其滤波性能的一个技术指标,它被定义为总体平均超量均方误差值„s)与最小均方误差值蔬m之比,即

M二日,(切]把式(2-26)代入上式中,得到乩

M=—

2-“艺人

r-i

通常所用IL值很小,因此,失调又可近似表示为

I肘

M=

L/=i

(2-28)

(2-29)

(2-30)

显而易见,自适应滤波器LHS算法的稳态失调与步长[1成正比。

把算法的总体平均学

1“

上面诸式表明:

M=橙矿m

(2-31)

习曲线的时间常数(巧叱)“写成2叭的逆数,而平均特征值心应等侖马,则滤波器稳定失调M又可由式(2-29)写成•

(1)失调为自适应LHS算法提供了一个很有用的测度>比如10%失调意味着自适应算法所产生的总体平均MSE高于最小均方误差的增量值为10%;

(2)失调是随滤波系数数目线性增加的;

(3)失调可以做的任意小,只要选用大的时间常数(rmxe)av>也就是小的步长值即可。

但是,滤波器自适应收敛过程需要长的时间,影响了滤波器自学习、自训练的速度,所以,自适应滤波器LMS算法的失调与自适应收敛过程之间存在着矛盾,如何缩短收敛过程,而且有很小的失调,这是值得研究的问题。

2.2.4缩短收敛过程的方法

根据自适应滤波器权系数调节的递归计算公式可以看出>LMS算法的迭代公式为

1A

w(n+1)=vv(/2)+—“[_0(n)]

为了缩短收敛过程,概括起来可以从如下三个方面进行设计:

第一,采用不同的梯度估值&

G),如LMS牛顿算法,它估计&

时采用了输入矢量相关函数的估值,使得收敛速度大大快于上述经典的LMS算法,因为它在迭代过程中采用了更多的有关输入信号矢量的信息。

第二,对收敛因子步长[1选用不同方法。

步长[1的大小决定着算法的收敛速度和达到稳态的失调量的大小。

对于常数的u.值来说,收敛速度和失调量是一对矛盾,要想得到较快的收敛速度可选用大的“值,这将导致较大的失调量;

如果要满足失调量的要求,则收敛速度受到制约。

因此,人们研究了采用变步长的方法来克服这一矛盾。

自适应过程开始时,取用较大的“值以保证较快的收敛速度,然后让[1值逐渐减小,以保证收敛后得到较小的失调量。

现在已有不同准则来调整步长u.,如归一化LMS算法、时域正交化LMS算法等。

第三,采用变换域分块处理技术。

对由滤波器权系数矢量调整的修正项中的乘积用变换域快速算法与分块处理技术可以大大减少计算量,且能改善收敛特性,如频域LMS算法、分块LMS算法等。

第三章LMS自适应滤波器的改进形式

文献中已经提出了许多基于LMS算法的改进的自适应算法。

这些算法的共同特点是从LMS算法出发,试图改进LMS算法的某些性能,包括LMS算法的收敛特性,减小稳态均方误差,减小计算复杂度。

3.1归一化LMS算法

如果不希望用与估计输入信号矢量有关的相关矩阵来加快LMS算法的收敛速度,那么可用变步长方法来缩短其自适应

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2