HoekBrown强度准则资料.docx

上传人:b****4 文档编号:5985530 上传时间:2023-05-09 格式:DOCX 页数:33 大小:205.11KB
下载 相关 举报
HoekBrown强度准则资料.docx_第1页
第1页 / 共33页
HoekBrown强度准则资料.docx_第2页
第2页 / 共33页
HoekBrown强度准则资料.docx_第3页
第3页 / 共33页
HoekBrown强度准则资料.docx_第4页
第4页 / 共33页
HoekBrown强度准则资料.docx_第5页
第5页 / 共33页
HoekBrown强度准则资料.docx_第6页
第6页 / 共33页
HoekBrown强度准则资料.docx_第7页
第7页 / 共33页
HoekBrown强度准则资料.docx_第8页
第8页 / 共33页
HoekBrown强度准则资料.docx_第9页
第9页 / 共33页
HoekBrown强度准则资料.docx_第10页
第10页 / 共33页
HoekBrown强度准则资料.docx_第11页
第11页 / 共33页
HoekBrown强度准则资料.docx_第12页
第12页 / 共33页
HoekBrown强度准则资料.docx_第13页
第13页 / 共33页
HoekBrown强度准则资料.docx_第14页
第14页 / 共33页
HoekBrown强度准则资料.docx_第15页
第15页 / 共33页
HoekBrown强度准则资料.docx_第16页
第16页 / 共33页
HoekBrown强度准则资料.docx_第17页
第17页 / 共33页
HoekBrown强度准则资料.docx_第18页
第18页 / 共33页
HoekBrown强度准则资料.docx_第19页
第19页 / 共33页
HoekBrown强度准则资料.docx_第20页
第20页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

HoekBrown强度准则资料.docx

《HoekBrown强度准则资料.docx》由会员分享,可在线阅读,更多相关《HoekBrown强度准则资料.docx(33页珍藏版)》请在冰点文库上搜索。

HoekBrown强度准则资料.docx

HoekBrown强度准则资料

第四章基于Hoek-Brown强度准则的岩体力学参数估算

4.1岩体结构精细描述

4.1.1试验洞概况

1#试验洞桩号里程为AK12+567m,主洞深度约57m,在深度约28m处向东平行于辅助洞开挖试验支洞,支洞深度约30m。

在支洞深度约18m的位置为T2y6/T2b地层分界。

盐塘组第六段(T2y6)的主要岩性为:

灰--灰黑色泥质灰岩夹深灰色大理岩,泥质灰岩呈极薄层--中厚层状,主要矿物为方解石、石英、云母、炭、泥质和少量黄铁矿,镜下具泥质微粒结构。

常见泥质条带与灰岩互层出现;所夹大理岩细晶致密,常呈厚层状出露。

2#试验洞桩号里程为AK08+850m,主洞深度约80m,在深度约25m处向东平行于辅助洞开挖试验支洞,支洞深度约30m。

在主洞末端向西开挖试验支洞,支洞深度约20m,整个试验洞和支洞位于T2b地层中。

白山组(T2b)岩性主要为灰--灰白色致密厚层块状大理岩。

3#试验洞桩号里程为AK08+950m,主洞深度约60m,在深度约25m处向西平行于辅助洞开挖试验支洞,支洞深度约30m,作为开挖变形监测支洞,并延伸后为暗物质实验室。

在主洞末端向西开挖试验支洞,支洞深度约20m,整个试验洞和支洞位于T2b地层中。

岩性主要为厚层状大理岩,有时略带紫色或白色,细晶致密。

4#验洞桩号里程为AK04+850m,主洞深度约50m,位于T3地层中。

地层岩性主要为灰黑色板岩夹青灰色粉砂岩,层理明显,薄层状,并偶夹薄层泥灰岩。

4.1.2结构面描述统计

采用精测线法分别对1#至4#试验洞洞壁进行结构面统计描述。

通过对实测结构面进行室内统计分析后,得到结构面走向玫瑰花图,根据赤平投影原理得到结构面等密度图[65-68],见图4.1--4.4。

 

图4.1测线1结构面等密度图及走向玫瑰花图

 

图4.2测线2结构面等密度图及走向玫瑰花图

 

图4.3测线3结构面等密度图及走向玫瑰花图

图4.4测线4结构面等密度图及走向玫瑰花图

 

根据结构面走向玫瑰花图与等密度图,可以得知每条测线上结构面的优势分组,各组结构面优势产状如表4.1所示,结构面几何特征如表4.2。

由于3#试验支洞优势三、四、五组所包含结构面数量较少,其统计特征不明显。

表4.1结构面优势产状均值及范围列表

试验洞编号

岩性

分组

倾向/°

倾角/°

倾向范围/°

倾角范围/°

1#试验支洞

大理岩

优势一组

90

62

48--125

41--88

优势二组

307

70

270--318

56--87

优势三组

341

56

321--19

41--85

2#试验支洞

大理岩

优势一组

24

62

4--47

45--81

优势二组

202

48

187--243

33--88

优势三组

278

65

253--288

56--81

3#试验支洞

大理岩

优势一组

27

73

12--37

49--90

优势二组

61

71

38--74

43--86

优势三组

141

54

124--152

39--67

优势四组

163

66

153--171

57--78

优势五组

200

60

187--214

49--73

4#试验支洞

砂板岩

优势一组

22

54

7--37

33--81

优势二组

55

72

40--73

58--90

优势三组

181

57

167--190

35--81

优势四组

210

71

195--251

48--90

 

表4.2结构面几何特征概率模型参数表

试验洞编号

岩性

分组

几何特征

分布规律

参数1

参数2

均值

标准差

1#试验支洞

 

1#试验支洞

 

大理岩

 

大理岩

优势一组

倾向

正态分布

89.58

13.43

89.58

13.43

倾角

正态分布

70.77

7.36

70.77

7.36

半迹长

负指数分布

0.60

/

1.66

0.65

间距

负指数分布

3.70

/

0.27

0.54

优势二组

倾向

正态分布

301.05

11.53

301.05

11.53

倾角

正态分布

78.05

7.25

78.05

7.25

半迹长

负指数分布

0.56

/

1.78

0.56

间距

负指数分布

2.56

/

0.39

0.93

优势三组

倾向

正态分布

349.68

12.05

349.68

12.05

倾角

正态分布

61.63

9.25

61.63

9.25

半迹长

负指数分布

0.82

/

1.22

0.72

间距

据调查统计,有近94%的人喜欢亲戚朋友送给自己一件手工艺品。

无论是送人,个人兴趣,装饰还是想学手艺,DIY手工制作都能满足你的需求。

下表反映了同学们购买手工艺制品的目的。

如图(1-4)负指数分布

喜欢□一般□不喜欢□1.19

“碧芝”最吸引人的是那些小巧的珠子、亮片等,都是平日里不常见的。

店长梁小姐介绍,店内的饰珠有威尼斯印第安的玻璃珠、秘鲁的陶珠、奥利的施华洛世奇水晶、法国的仿金片、日本的梦幻珠等,五彩缤纷,流光异彩。

按照饰珠的质地可分为玻璃、骨质、角质、陶制、水晶、仿金、木制等种类,其造型更是千姿百态:

珠型、圆柱型、动物造型、多边形、图腾形象等,美不胜收。

全部都是进口的,从几毛钱一个到几十元一个的珠子,做一个成品饰物大约需要几十元,当然,还要决定于你的心意。

“碧芝”提倡自己制作:

端个特制的盘子到柜台前,按自己的构思选取喜爱的饰珠和配件,再把它们串成成品。

这里的饰珠和配件的价格随质地而各有同,所用的线绳价格从几元到一二十元不等,如果让店员帮忙串制,还要收取10%~20%的手工费。

/

beadorks公司成功地创造了这样一种气氛:

商店和顾客不再是单纯的买卖关系,营业员只是起着参谋的作用,顾客成为商品或者说是作品的作参与者,营业员和顾客互相交流切磋,成为一个共同的创作体0.84

1.33

 

加拿大beadworks公司就是根据年轻女性要充分展现自己个性的需求,将世界各地的珠类饰品汇集于“碧芝自制饰品店”内,由消费者自选、自组、自制,这样就能在每个消费者亲手制作、充分发挥她们的艺术想像力的基础上,创作出作品,达到展现个性的效果。

2#试验支洞

 

开了连锁店,最大的好处是让别人记住你。

“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。

“品牌效应”是商家梦寐以求的制胜法宝。

大理岩

据了解,百分之八十的饰品店都推出“DIY饰品”来吸引顾客,一方面顺应了年轻一代喜欢与众不同、标新立异的心理;另一方面,自制饰品价格相对较低,可以随时更新换代,也满足了年轻人“喜新厌旧”的需要,因而很受欢迎。

优势一组

“碧芝自制饰品店”拥有丰富的不可替代的异国风采和吸引人的魅力,理由是如此的简单:

世界是每一个国家和民族都有自己的饰品文化,将其汇集进行再组合可以无穷繁衍。

倾向

调研结论:

综上分析,我们认为在学院内开发“DIY手工艺品”商店这一创业项目是完全可行的。

正态分布

朋友推荐□宣传广告□逛街时发现的□上网□22.58

6.61

22.58

6.61

倾角

正态分布

69.71

3.96

69.71

3.96

半迹长

负指数分布

0.50

/

2.00

0.00

间距

负指数分布

2.94

/

0.34

0.63

优势二组

倾向

正态分布

222.42

26.65

222.42

26.65

倾角

正态分布

65.08

11.11

65.08

11.11

半迹长

负指数分布

1.67

/

0.60

0.69

间距

负指数分布

1.09

/

0.92

1.41

优势三组

倾向

正态分布

269.33

9.67

269.33

9.67

倾角

正态分布

80.33

0.52

80.33

0.52

半迹长

负指数分布

2.00

/

0.50

0.26

间距

负指数分布

1.18

/

0.85

0.91

 

3#试验支洞

大理岩

优势一组

倾向

正态分布

26.29

5.69

26.29

5.69

倾角

正态分布

81.20

7.76

81.20

7.76

半迹长

负指数分布

0.58

/

1.73

0.51

间距

负指数分布

1.52

/

0.66

1.35

优势二组

倾向

正态分布

52.36

10.69

52.36

10.69

倾角

正态分布

70.89

10.69

70.89

10.69

半迹长

负指数分布

0.74

/

1.36

0.80

间距

负指数分布

2.00

/

0.50

0.86

4#试验支洞

 

4#试验支洞

砂板岩

 

砂板岩

优势一组

倾向

正态分布

22.55

6.36

22.55

6.36

倾角

正态分布

60.40

10.30

60.40

10.30

半迹长

负指数分布

0.87

/

1.15

0.61

间距

负指数分布

1.09

/

0.92

1.06

优势二组

倾向

正态分布

53.96

7.20

53.96

7.20

倾角

正态分布

74.67

13.48

74.67

13.48

半迹长

负指数分布

1.33

/

0.75

0.53

间距

负指数分布

1.37

/

0.73

1.08

优势三组

倾向

正态分布

180.06

4.88

180.06

4.88

倾角

正态分布

64.75

10.26

64.75

10.26

半迹长

负指数分布

1.05

/

0.95

0.48

间距

负指数分布

1.35

/

0.74

0.83

优势四组

倾向

正态分布

213.45

10.66

213.45

10.66

倾角

正态分布

75.07

8.80

75.07

8.80

半迹长

负指数分布

1.14

/

0.88

0.66

间距

负指数分布

2.00

/

0.50

0.69

4.2洞室围岩地质强度指标(GSI)分类

GSI方法体系是E.Hoek多年来与世界各地与之合作的地质工作者共同研究发展起来的一种方法,它根据岩体结构、岩体中岩块的嵌锁状态和岩体中不连续面质量,综合各种地质信息进行估值。

GSI指标是基于岩体的岩性、结构类型和结构面条件等因素,通过对揭露的岩体进行肉眼观察评价,综合考虑两个基本因素,即岩体结构类型与结构面特征对工程岩体进行分类。

GSI的量化指标包括岩体结构等级SR(StructureRatings)和结构面表面特征等级SCR(SurfaceConditionRatings),通过表4.3确定岩体地质强度GSI值[69-74]。

表4.3GSI分类量化表

 

岩体结构等级SR值是利用体积节理数JV,通过半对数图(见图4.5)进行取值。

JV是指单位体积岩体内所交切的节理总数,是国际岩石力学委员会(ISRM)推荐用来定量评价岩体节理化程度和单位岩体块度的一个指标。

图4.5岩体结构等级取值半对数图

岩体结构等级取值

SR=-54.44lgJV+101.53(4-1)

体积节理数JV可用下面的公式表

(4-2)

式中,N为沿某一测线的节理数;L为测线的长度(m);S为某一组节理的间距(m);n为节理的组数;Nx,Ny,Nz分别为沿相互垂直方向测线上的节理数;Lx,Ly,Lz分别为沿相互垂直方向测线的长度。

结构面表面特征等级SCR的取值主要考虑结构面的粗糙度Rr(RoughnessRatings)、风化程度Rw(WeatheringRatings)及充填物状况Rf(InfillingRatings),并按下式取值:

SCR=Rr+Rw+Rf(4-3)

式中,Rr,Rw,Rf的取值标准见表4.4。

表4.4岩体结构面特征等级取值表

组成要素

SCR=Rr+Rw+Rf

粗糙程度Rr

非常粗糙

粗糙

稍粗糙

光滑

镜面光滑

6

5

3

1

0

风化程度Rw

未风化

微风化

中风化

强风化

全风化

6

5

3

1

0

充填程度Rf

闭合无充填

隙宽<5mm,充填密实

隙宽>5mm,充填密实

隙宽<5mm,充填松散

隙宽>5mm,充填松散

6

4

2

2

0

4.3Hoek-Brown强度准则

1980年,E.Hoek和E.T.Brown在分析Griffith理论和修正的Griffith理论的基础上,通过对大量岩石三轴试验资料和岩体现场试验成果的统计分析,用试错法导出了岩块和岩体破坏时极限主应力之间的关系式(4-4),即为Hoek-Brown强度准则,也称为狭义Hoek-Brown强度准则:

(4-4)

式中,σ1、σ3岩体破坏时的最大、最小主应力(MPa);σc为岩块单轴抗压强度(MPa);m、s为经验参数。

m反映岩石的软硬程度,其取值范围在0.0000001--25之间,对严重扰动岩体取0.0000001,完整坚硬岩体取25;s反映岩体破碎程度,其取值范围在0--1之间,破碎岩体取0,完整岩体取1。

Hoek-Brown强度准则尽可能的反映了岩块强度、结构面组数、所处应力状态对岩体强度的影响等。

1992年,E.Hoek针对1980年提出的强度准则的不足,提出了狭义Hoek-Brown经验强度准则的修正形式,称为广义Hoek-Brown经验强度准则[75-79],其表达式为:

(4-5)

式中,mb为经验参数m的值;a为与岩体特征有关的常数。

对质量好的岩体,由于岩石颗粒紧密嵌固,因而其强度特性主要由岩石颗粒强度所控制,此时,狭义Hoek-Brown经验强度准则较适合,可取a=0.5;对质量较差的岩体,由于剪切作用或风化作用使岩体碎块间的嵌固松散,导致岩体抗拉强度丧失,即粘聚力C=0,若无围压限制,岩体将塌落。

对此类岩体修正后的广义Hoek-Brown经验强度准则较适合。

4.4基于Hoek-Brown准则的岩体力学参数估算

对不含结构面的完整岩体,可视为各向同性的均质岩体,在确定经验参数s,a,mi,mb,岩体GSI值,扰动程度D和岩块单轴抗压强度σci后,可以按以下方法确定岩体的变形模量和抗剪强度[80-84]。

主要步骤如下:

(1)根据现场工程地质描述统计,确定岩体地质强度指标GSI值以及岩体扰动程度D值。

其中GSI值确定详见表4.3岩体GSI分类,D值可根据表4.5确定。

表4.5岩体扰动程度建议值

岩体描述

扰动程度D建议值

质量极好的爆破或镗床开挖;破碎岩体手工或机械开挖,扰动极小

0

破碎岩体挤压地板鼓起

0.5

边坡小规模爆破,并产生一定破坏,爆破质量好;大型矿山边坡,机械开挖

0.7

坚硬岩石爆破质量差,产生局部破坏达2-3m

0.8

边坡小规模爆破,并产生一定破坏,爆破质量差;大型矿山边坡,因爆破或过度应力释放产生强烈扰动

1.0

(2)根据下式确定经验参数s、a。

(4-6)

(4-7)

(3)根据室内试验确定岩块抗压强度σci,查表取得完整岩块经验参数值mi,

根据下式计算mb:

(4-8)

此时,Hoek-Brown强度准则中的σci,mi,s,a等参数均已确定,并可进行岩体力学参数估算。

(4)岩体变形模量估算:

(4-9)

(5)岩体抗剪强度参数估算:

(4-10)

(4-11)

式4-10和4-11中,σ3n为可转换范围,其计算式为:

(4-12)

(4-13)

其中σcm为岩体整体强度:

(4-14)

4.5岩体力学参数估算成果

通过对现场地质调查获得的结构面进行统计分析,可以得到岩体地质强度评分值GSI(见表4.6)和岩体扰动系数D,利用室内试验获得的岩体单轴抗压强度σci,按照4.4节的计算步骤可以得到岩体的力学参数(见表4.7、表4.8)。

表4.6GSI分类指标取值

位置

扰动情况

节理数N

测线长度L

JV

SR

Rr

Rw

Rf

SCR

GSI

1#试验洞

表层扰动

190

29.60

6.42

57.6

1

5

2

8

46

深层未扰动

1

6

6

13

58

2#试验洞

表层扰动

65

10.77

6.04

59.0

5

6

2

13

61

深层未扰动

5

6

6

17

72

3#试验洞

表层扰动

128

24.10

5.31

62.0

5

6

2

13

62

深层未扰动

5

6

6

17

73

4#试验洞

表层扰动

136

21.40

6.36

57.8

5

5

2

12

57

深层未扰动

5

6

6

17

70

表4.7岩体力学参数经验估算值

位置

扰动情况

经验参数

GSI

扰动系数D

单轴抗压强度MPa

粘聚力MPa

内摩擦角°

s

a

mi

mb

1#试验洞

表层扰动

0.0017

0.505

10

1.017

52

0.5

109.0

4.72

26.0

深层未扰动

0.0075

0.504

10

2.077

56

0

109.0

6.31

31.6

2#试验洞

表层扰动

0.0048

0.503

10

1.489

60

0.5

109.0

5.60

28.9

深层未扰动

0.0205

0.502

10

2.865

65

0

109.0

7.42

34.1

3#试验洞

表层扰动

0.0063

0.502

10

1.637

62

0.5

113.0

5.94

30.0

深层未扰动

0.0256

0.502

10

3.077

67

0

113.0

7.85

35.0

4#试验洞

表层扰动

0.0032

0.504

10

1.290

57

0.5

111.0

5.29

28.0

深层未扰动

0.0183

0.502

10

2.765

64

0

111.0

7.34

34.0

 

表4.8岩体力学参数估算值

4.6成果综合分析

通过前述的研究分析,各种方法获得的大理岩岩体(岩石)的强度参数粘聚力C和摩擦系数f见表4.9。

表4.9不同方法获得的大理岩岩体(岩石)强度参数

试样

结构面

岩体

岩体

岩体

岩块

岩块

岩块

途径

直剪

H-B准则

三轴

直剪

三轴

三轴

三轴

加载方式

加载

/

卸载

加载

加载

峰前卸载

峰后卸载

粘聚力CMPa

1.84

7.42

10.43

2.79

42.65

22.64

20.70

摩擦系数f

0.38

0.68

1.05

1.26

0.88

1.01

0.91

综合分析成果表明:

不同应力路径下的岩石强度及强度参数不同,常规三轴加载试验>峰前卸载破坏试验>峰后卸载破坏试验。

高应力条件岩体强度参数与常规应力条件有明显的不同。

不但强度参数大小不同,强度参数特性也不一样,岩体强度在高压条件下呈现明显的非线性特征。

现场岩体三轴卸载试验结果表明:

在应力水平不高时(正应力<25MPa),Mohr-Columb强度准则与Hoek-Brown强度准则的差异不大,但在高应力水平下(正应力>25MPa),Hoek-Brown强度准则显得更为合理。

岩体试样受力状态对岩体强度参数具有较大的影响。

现场岩体三轴卸载试验处于三向受力状态,岩体直剪试验处于二向受力状态。

现场岩体三轴卸载试验获得的岩体摩擦系数与岩体直剪试验获得的岩体摩擦系数差异不大,但三轴试验获得的岩体粘聚力要明显高于直剪试验获得的岩体粘聚力。

岩体强度与试验时试样尺寸有关系,存在尺寸效应。

岩块三轴试验、岩体三轴卸载试验和通过Hoek-Brown强度准则估算岩体强度参数的结果表明,随着岩体尺寸的增加,摩擦系数及粘聚力总的来说具有逐渐减小的趋势。

第五章结论与展望

5.1主要结论

通过开展不同应力路径下的岩石加卸载室内试验、现场岩体及结构面直剪和岩体真三轴试验,利用Hoek-Brown强度准则进行岩体强度参数估算,获得了不同的岩体强度参数,对高应力条件下的深埋岩体的强度特性有了一定的认识,得到的主要结论如下:

各种应力路径下的岩石强度均具有围压效应。

即围压对岩样的轴向承载力有较大的影响,以峰前卸围压最为敏感,峰后卸围压次之,常规三轴加载最不敏感。

不同应力路径下的岩石强度及强度参数不同,常规三轴加载试验>峰前卸载破坏试验>峰后卸载破坏试验。

结构面直剪试验表明峰值抗剪强度与正应力在高压下呈现很明显的非线性线关系,并且对于同一性状的结构面而言,随着法向压力增加,其摩擦系数降低而粘聚力增加。

高应力条件岩体强度参数与常规应力条件有明显的不同。

不但强度参数大小不同,强度参数特性也不一样,岩体强度在高压条件下呈现明显的非线性特征。

现场岩体三轴卸载试验结果表明:

在应力水平不高时(正应力<25MPa),Mohr-Columb强度准则与Hoek-Brown强度准则的差异不大,但在高应力水平下(正应力>25MPa),Hoek-Brown强度准则显得更为合理。

岩体试样受力状态对岩体强度参数具有较大的影响。

现场岩体三轴卸载试验处于三向受力状态,岩体直剪试验处于二向受力状态。

现场岩体三轴卸载试验获得的岩体摩擦系数与岩体直剪试验获得的岩体摩擦系数差异不大,但三轴试验获得的岩体粘聚力要明显高于直剪试验获得的岩体粘聚力。

岩体强度与试验时试样尺寸有关系,存在尺寸效应。

岩块三轴试验、岩体三轴卸载试验和通过Hoek-Brown强度准则估算岩体强度参数的结果表明,随着岩体尺寸的增加,摩擦系数及粘聚力总的来说具有逐渐减小的趋势。

5.2展望

通过采用多种手段对高应力条件下岩体强度参数进行研究,取得了一些初步认识。

但由于作者理论水平和研究时间有限,而且高应力条件下的岩体强度参数研究时间不长,对高地应力条件下的岩体强度参数的研究不够广泛和深入,下阶段将对以下几个方面进行进一步的研究:

(1)现场真三轴试验数据偏少且较离散,分析也不够深入,如何结合室内岩块试验研究岩体强度参数,需要进行进一步的分析研究工作。

(2)运用Hoek-Brown强度准则对岩体强度参数的估算,其准确性与研究人员的经验有很大关系;Hoek-Brown强度准则对高应力条件下岩体强度参数评估的适应性,有待于进一步的研究。

(3)不同的方法获取的岩体强度参数具有差异,需要分析出原因,研究它们之间的联系。

参考文献

【1】古德生.金

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2