机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx

上传人:b****1 文档编号:600234 上传时间:2023-04-29 格式:DOCX 页数:24 大小:2.43MB
下载 相关 举报
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第1页
第1页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第2页
第2页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第3页
第3页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第4页
第4页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第5页
第5页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第6页
第6页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第7页
第7页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第8页
第8页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第9页
第9页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第10页
第10页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第11页
第11页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第12页
第12页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第13页
第13页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第14页
第14页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第15页
第15页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第16页
第16页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第17页
第17页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第18页
第18页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第19页
第19页 / 共24页
机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx

《机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx》由会员分享,可在线阅读,更多相关《机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx(24页珍藏版)》请在冰点文库上搜索。

机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理.docx

机械毕业设计英文外文翻译金刚石刀具机械研磨过程中材料的去除机理

附录

外文翻译:

MaterialRemovingMechanismforMechanical

LappingofDiamondCuttingTools

LIZeng-qiang,ZONGWen-jun,SUNTao,DONGShen

(CenterforPrecisionEngineering,HarbinInstituteofTechnology,Harbin150001,China)

Abstract:

Thematerialremovingmechanismformechanicallappingofdiamondcuttingtoolswasilluminatedattheatomisticscale.Inlappingprocess,phasetransformationofthelappingregionwasthemainreasonforthematerialremoval.Thusathree-dimensionalmodelofaspecimenofthediamondmonocrystalandrigiddiamondgritwasbuiltwiththeaidofthemoleculardynamics(MD)simulation.TheforcebetweenalloftheatomswascalculatedbytheTersoffpotential.After

that,lappingwithacertaincuttingdepthof1.5latticeconstantswassimulated.Bymonitoringthepositionsofatomswithinthemodel,themicrostructureinthelappingregionchangesasdiamondtransformedfromitsdiamondcubicstructuretoamorphouscarbonwereidentified.Thechangeofstructurewasaccomplishedbytheflatteningofthetetrahedronstructureindiamond.Thiswasverifiedbycomparingtheradialdistributionfunctionsofatomsinthelappingandun-lappingregions.Meanwhile,thedebrisproducedinlappingexperimentwasanalyzedbyXRD(X-raydiffraction).Theresultsshowthatthephasetransformationhappensindeed.

Keywords:

diamondcuttingtools;mechanicallapping;materialremovingmechanism;moleculardynamicssimulation

Itisanimportantwaytoturntheopticalsurfacewithnaturaldiamondcuttingtoolstoobtainhighaccuracy.Theprocessedwork-pieces’surfacehaslowersurfaceroughnessandresidualstress,andsmallermetamorphicregionthanthosemachinedinusualways.

Diamondisthemostimportantmaterialtomakecuttingtoolsintheultra-precisionmachining,foritisanidealbrittlesolidwiththegreatesthardnessandresistancetoplasticdeformationofanymaterialandhasveryhighdimensionalhomogeneity.Thesharpeningmethodofdiamondcuttingtoolsisthekeytechnologytoobtainsharpcuttingradius,goodsurfacequalityandsmallgeometrictolerance[1].Therearemanysharpeningmethodssuchaslapping,ionbeamsputtering,thermalchemistrypolishing,plasmapolishing,oxideetchingandlasererosion,etc.Themostcommonandeffectivemethodislapping[2].Themechanismofthematerialremovalinlappinghasalotofstatementssuchasthemicro-cleavagetheory[3],thethermalabrasiontheory[4],electro-abrasiontheory[5]andtheoryoffracturetakingplaceintheharddirection[6],etc.However,theseexplanationsareonlysatisfactoryintheparticularsituation.Theexplanationacceptedbymostpeopleisthatthehybridizedorbitofthecarbonconvertsfromsp3tosp2inlapping,asdemonstratedbyvanBouwelen[7],Grillo[8],HirdandField[9].Asyet,fewmanhasverifieditattheatomisticlevel.

Theextremelypowerfultechniqueofmoleculardynamics(MD)simulationinvolvessolvingtheclassicalmany-bodyproblemincontextsrelatingtothestudyofmatterattheatomisticlevel.Sincethereisnoalternativeapproachcapableofhandlingthisbroadrangeofproblemsattherequiredlevelofdetail,moleculardynamicsmethodshavebeenprovedindispensableinbothpureandappliedresearch,asdemonstratedbyRapaport[10].Moleculardynamicsanalysisisaneffectivemethodinstudyingindentation,adhesion,wearandfriction,surfacedefectsandnano-cuttingattheatomisticscale.Nowadays,MDanalysishasalreadybeenemployedtoinvestigatetheAFM-basednanolithographyprocessusinganAFMtool[11]andatomicsurfacemodificationinmonocrystallinesilicon[12].Therefore,itisanefficientwaytoapproachthemechanismofthematerialremovalinlappingusingmoleculardynamicssimulation.

Fromalltheabove,thisstudywillfocusonthematerialremovingmechanismindiamondmechanicallappingusingthree-dimensionalMDsimulation.Andthemicrocosmicphenomenainmechanicallappingwillbepresentedanddiscussed.

1Methods

1.1Simulationmodeling

Atthebeginning,themechanicallappingprocessofdiamondcuttingtoolsisintroduced.Thescaifeusedwasmadefromagreycastironandwasmedium“striped”(radialgroovestoholddiamondgrit).Itwas

preparedforusebyapplyingafilmofoliveoiltothesurface,beforeafewcaratsofgradeddiamondgritswererubbedevenlyintoit.Withthescaiferunningatahighspeed,adiamondcuttingtoolwaslappedbyapplyingaload.Inthisprocess,thediamondgritwasfixedinthescaife.So,theprocessbelongstothefixedabrasivepolishingcategory[13].Therefore,amodelofaspecimenofthediamondmonocrystalandrigiddiamondgritwasbuilt,asshowninFig.1.

Fig.1Moleculardynamicssimulationmodelofmechanicallappingofdiamondcuttingtools

Thecrystallatticeofthespecimenandthegritbelongedtothediamondcubicsystem.Thelatticeconstantofthissystemwas0.35667nm,whichwasrepresentedasa.Thecontrolvolumeofthespecimenmustbelargeenoughtoeliminateboundaryeffects.Takingthisintoconsideration,anoptimumcontrolvolumewaschosenbasedonaniterativeprocessofincreasingthecontrolvolumesizeuntilfurtherincreasesdidnotaffectthedisplacementsandvelocitiesoftheatomsduetolapping.Anoptimumsizeof50a×15a×30awasobtained,consistingof183,930atoms.Moreover,theperiodicboundaryconditionwasusedinthez-directiontoreducetheeffectsofthesimulationscale.Thespecimenincludedthreekindsofatoms,namely:

boundaryatoms,thermostatatomsandNewtonianatoms.Torestricttherigid-bodymotionofthespecimen,theboundaryatomsintheleftandbottomlayersofthespecimenthatwerefixedinspacewereusedtocontaintheNewtonianatoms.Thermostatatomswerealsousedtoensurereasonableoutwardheatconductionawayfromthecontrolvolume.ThermostatatomsandtheNewtonianatomsobeytheNewton’ssecondlaw.Thetopsurfaceofthespecimenwas(100)surface,whichwasexposedtothegrit.Thesphericaldiamondgrithadaradiusof8a,consistingof17,116atoms.Anditslidonthespecimenwiththedepthofh.

Beforecarryingoutthemoleculardynamicssimulationonthelappingofdiamond,itisimportanttoensurethatthechosenpotentialfunctiongivesareliableresultforthesimulation.Tersoffpotentialwasusedinthepresentsimulationtodictatetheinteractionamongthediamondatomsinthissimulation[14].TheparametersinTersoffpotentialforcarbonwereasfollows:

A=1,393.6eV,B=347.6eV,λ=34.879nm.1,μ=22.119nm.1,β=1.572,4×10.7,n=0.727,51,c=380,49,d=4.384,h=.0.57058,R=0.18nm,andS=0.21nm.PositionsandvelocitiesoftheatomsweredeterminedbytheVerletmethodasdemonstratedbyMaekawaandItoh[15].Tosimulatelappingunderroom-temperatureconditions,thediamondatomswerearrangedinaperfectdiamondcubicstructurewiththelatticeparametersequaltotheirequilibriumvaluesatanambienttemperatureof293K.Theambienttemperaturewasmaintainedbyscalingthevelocitiesofthethermostatatomsateveryspecialtimestep.Inthissimulation,the0.5fswasselectedasthetimesteptoobtainahighaccuracy.

ThissimulationwascalculatedbytheLammpssoftware[16],andvisualizedbytheVMDsoftware[17].Thevelocityofthelappingwas100awith1.5aincuttingdepthand40ainlappinglength.Beforethesimulation,thespecimenhadbeenrelaxedfor10000timestepsinordertomaintainthethermalbalance.

1.2Experiment

ThetestapparatusoflappingexperimentisshowninFig.2.Theabrasiveusedwasdiamondgritwithanaverageradiusof0.1μm.Theywerecoatedonthescaifeinaringwitharadiusof120mm.Thediamondcuttingtoolwasfixedonthearmbyaspecialfixture.Then,the

toolwaslappedwiththescaiferunningat3000r/min(ca.38m/s),underaloadof5Nwhichwasobtainedbyadjustingtheplaceoftheweight.Thedebriswascollectedafter30minlapping.Thereafter,theXRDstudieswerecarriedoutbySHIMADZUXRD-6000.

Fig.2Schematicdiagramofthelappingapparatus

2Resultsanddiscussions

2.1Moleculardynamicsanalysis

The3Dviewandcross-sectionviewofthesimulationareshowninFig.3.Thecrystallatticesnearthediamondgritaredistortedwhenthediamondgritcutsintothespecimen.Theregionincludingthesecrystallatticesishalf-ellipseinshape.Theregionisunderthediamondgritandabitlefttothecentero.Andthemajoraxisoftheellipseisinthesamedirectionasthecompositionofforces.Furthermore,thisregionmovesleftasthediamondgritslides.

AsshowninFig.4,A1+A2

Fig.3Microstructureofspecimenafterthegritsliding

Fig.4Sectionofthegroovesinthelongitudinaldirection

Therearethreekeypointsinlapping,asshowninFig.5.Firstly,atomsnearthediamondgritareforcedtomakesomedisplacementfromtheirinitialposition.Thecrystallatticesincludingtheseatomsdistortalittle.Theboundarybetweenthedistortedlatticesandtheperfectlatticesisalongthediamond(111)surface(theblacklines)asshowninFig.5(a).Thedisplacementsoftheatomsbecomebiggerandbiggeralongwiththediamondgritslidingleft.Moreandmoreatomsdeviatefromtheirinitialposition.Thelatticesincludingtheseatomsdistortseriously.Thephasetransformationthatthediamondcubicdiamondtransformsintoamorphousgraphitestartsonafewatoms(inthedarkcircles)attheendofthismoment.Thatistosaythatthehybridizedorbitconvertsfromsp3tosp2.Secondly,thelatticesbelowthediamondgrithave

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2